Data Base Systems I
Course Overview

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu
The University of Texas at Arlington
Instructor/notes/project Information

- Instructor: Sharma Chakravarthy

- My course NOTES web site:
 https://wweb.uta.edu/faculty/sharmac

- Blackboard (www.elearn.uta) will be used for assignments announcements, and project submissions as well as project discussions; No email submissions

- It is your responsibility to check for material (announcements, notes, homework, and quiz/exam details) added to the course web site or blackboard!

- My Research web site:
 http://itlab.uta.edu/sharma

- My contact:
 Room: ERB 632
 Email: sharma@cse.uta.edu, Phone: 817 272 2082
TA Information

- **TA:** TBD
- **Email:** TBD

- **Instructor Office hours:** ERB 632
 Tu/Th: 11:15 am to 12:15 pm + by appointment

- **TA office hours:** TBD (on Mon/wed)

- **TA will deal with the project, home works**
- **Please send all correspondence to both**
Other Information

- Each of you have to send me an email as follows: “For course CSE 5330, I will follow the UT Arlington honor code and all my submissions (projects and tests/exams) will conform to the UT Arlington standards for academic integrity (including UTA honor code)”

- Cheating, collusion, and plagiarism will be seriously dealt with (an automatic Fail grade)
- If you have difficulty, come see us but do not resort to the above
Academic Honesty

What Constitutes Scholastic Dishonesty?

Cheating

• Copying another's test of assignment.
• Communication with another during an exam or assignment (i.e. written, oral or otherwise).
• Giving or seeking aid from another when not permitted by the instructor.
• Possessing or using unauthorized materials during the test.
• Buying, using, stealing, transporting, or soliciting a test, draft of a test, or answer key.
Academic Honesty

What Constitutes Scholastic Dishonesty?

Plagiarism

• Using someone else's work in your assignment without appropriate acknowledgement.
• Making slight variations in the language and failing to give credit to the source.
• Copying materials from the Internet without citing the source.
• Using code/material from previous years without acknowledging the source.
Academic Honesty

What Constitutes Scholastic Dishonesty?

Collusion

• Without authorization, collaborating with another when preparing an assignment or homework or other requirements of the course
Overview

- This is an introductory graduate course on Database management systems at the CSE department at UTA.

- This course is about understanding a DBMS primarily from a users’ perspective (as opposed to a system perspective).
 - Requirements analysis
 - Design and development of an application
 - Understanding the relational model
 - Understanding of DBMS architecture and functionality
 - Understanding SQL, creation and management of a database
 - Development of an application to interact with a DBMS
 - Overview of Storage management
 - Overview of query processing, and transaction management

- The emphasis of this course is on gathering application requirements, ER modeling, Relational model, SQL, NoSQL, and understanding the components of a DBMS to effectively use it for a variety of data intensive applications.
Organization of the course

- 3 modules
 - Need for a DBMS and Application modeling
 - Relational Concepts including Relational algebra and SQL
 - DBMS components: storage, Query processing and transaction management
 - Time permitting -- NoSQL DBMSs

- A semester long implementation project (Using Oracle on Omega and Java)

- 3 tests (in-class, closed book/notes)

- Home works are assigned (and graded if submitted) to help prepare for quizzes/exams
Project advise

- **You will come up** with an interesting problem in your domain/area of interest/expertise (see examples)

- This will be an application where we need to model the **data aspect** of the application (not the computation)

- Will develop an application with the DBMS as the backend

- Give enough thought to the overall project, make sure you understand all the steps, and have a management plan

- Should be able to ask queries, generate necessary reports

- Need to use SQL (will be taught in the course) and as it is a different concept from a programming language, requires practice to get comfortable

- Please start on the project immediately (if we give 3 weeks, it means that it requires 3 weeks NOT 3 days)
Project details

- This is a semester-long project with five phases. There is a deadline for each phase and each phase has a grade (except phase 1).
- The grade for the project is a cumulative grade of the phases.
- As the phases are dependent on each other, you need to complete the previous phase in order to proceed to the next phase.
- Please make sure you submit each phase on time using bb; there are NO late submissions.
- Take a look at http://infolab.stanford.edu/~ullman/fcdb.html#projects

There are several examples. Use them to understand what you need to do, but do not copy them.
Project details

- **Phase I: [0%] Problem statement [Hard]**
 - Come up with an interesting problem in your domain/area of interest/expertise
 - Write a description of the application, what data you want to model and what kind of queries you would like to pose and who will be the end users
 - We will put several samples on the web
 - Once the application is approved, revise it according to suggestions and proceed
 - I would like each group to meet me to discuss your application

- Phases are DUE as specified in the schedule by midnight on bb. Please submit it electronically in word or pdf or a scanned copy
Topic suggestions

- Organizing your music, video and others on your ipod
- Database for the athletics department
- Keeping track on inventory in an organization
- Library (or personal) book management
- Netflix video/users management
- International student organization requirements
- International students’ office requirements
- Inventory management for a grocery store
- Rental property management
- Management of accounts for the customers in a bank
- Management of games and statistics of players in a networked gaming environment
- Fraternity or sorority rush management
- Paper or web advertisement management

- Be creative, come with challenging and interesting problems
Topic suggestions (Contd.)

- Online Software rental and billing system
- Travel reservation system
- Hotel room rental and management system
- Management system for managing inventions
- System to associate a pharmacy and its inventory with various drug manufacturers.
- Auctioning system
- Management of the backend of social networks

- TA and I will make sure the problem is scoped properly for completion within the time available for this course

- Many students in the past have chosen problems of interest and continued it after the course
 - Modeling games
 - Modeling sorority rush
 - Modeling parent’s business
 - Problems that can be continued beyond this course
Project details (contd.)

- **Phase 2 [20%] EER diagram [Hard]**
 - Convert the problem statement to an EER diagram using the approach discussed in the class
 - Should contain at least 5 entities
 - Should contain 5 relationships (1:1, 1:n, and n:m)
 - Should have some attributes on relationships
 - Preferable to have at least one weak entity and relationships
 - Preferable to have set/subset relationships

- **Due:** as specified in the schedule on bb by midnight. Please submit electronically (only .doc or .pdf is accepted). You can draw and scan it and submit

- **Again, you may be asked to revise it and get approval before proceeding to the next step**
Project details (contd.)

- **Phase 3 [10%] RDB Schema [Easy]**
 - Once the EER diagram is approved, revise it according to suggestions and convert it into relations.
 - Identify all attributes and their types
 - Identify candidate, primary and foreign keys and other constraints that are relevant to the application

- **DUE:** as specified in the schedule on bb midnight. No late submissions
Project details (contd.)

- Phase 4 [35%] Create the database and complex queries [easy, but needs to be done methodically, takes time]
 - Revise the schema according to suggestions and convert it into relations.
 - Identify all attributes and their types
 - Identify candidate, primary and foreign keys and other constraints that are relevant to the application
 - Generate schema for the Oracle database
 - Use assertions, check, and triggers where appropriate
Phase 4 (contd.)

- Create the relations in the database
- Populate the relations using your own data
- Run ad hoc queries
 - Queries should contain joins, group by, having by, and order by clauses
 - Use triggers to monitor the state of the database
- Support insert/delete and update statements
- Finally, demo this phase as specified
Project details (contd.)

- Phase 5 [35%] User interface [Moderate, takes JDBC understanding, has coding, takes time]
 - Create an user interface for your applications (can get prepared for this while other stages are ongoing)
 - Run interface based parameterized queries.
 - Use dynamic SQL
 - Use triggers to monitor the state of the database

- Finally, demo the project by the last day of classes
DBMS to be used

- We will use Oracle on Omega with a JDBC connection to the interface.
- You can log into Omega from anywhere.
- NH 239 has a number of terminals from which can be used for this course (open 24 hours)

- Using ssh you can log into Omega
- Projects will be accepted only electronically.
- Projects should run on Omega for grading purposes
What is assumed

- Some Discrete mathematics (functions, mapping)
- Set theory
- Knowledge of Java or C++
- JDBC and basic use of Linux/Unix
How to do well on the course

- Attend all the lectures
- Do follow up reading before and immediately after the lecture (not 1 day before the exam)
- Come prepared and ask questions in the class
- Make the class interactive
- There are NO dumb or trivial questions; all questions are important
- Solve all homework problems yourself and submit it
- Make use of my (and TA’s) office hours
Beyond this course …

- If you get excited about databases and related areas, there are a number of courses you can take beyond this course.

- If you are interested in doing a thesis (MS/PhD) in the general areas of Databases, social network analysis, cloud computing, information integration, mining, complex event and stream processing, information security – stop by and talk to me.
Funding Sources: NSF, Spawar, AFRL, Rome Lab, ONR, DARPA, TI, MCC

Select Projects

✓ Data Analytics Using Multi-layered graphs
✓ Scalable Graph Mining using Map/reduce
✓ MavVStream: (video content analysis by querying)
✓ Expertise identification in Q/A community
✓ Ranking in web databases
✓ Mining: Graph, Text, Assoc Rules
✓ Prediction of Event Patterns
✓ Information Search, Filtering, and classification

Select Publications

5. Y. Cai and S. Chakravarthy, “Improving Answer Quality Prediction in Q/A Social Networks by Leveraging Temporal Features”, in IJNGC, March 2013
7. A. Venkatachalam, M. Aery, S. Chakravarthy, and A. Telang, m-InfoSift: Multi folder email classification based on Graph Mining, ICDM 2010, Sydney, Australia
8. S. Padmanabhan and S. Chakravarthy, HDB-Subdue: A Scalable Approach to Graph Mining, DAWAK 2009

PhD Students –
Mr. Abhishek Santra
Mr. Asif Khairuzzaman

MS Thesis
Mr. Mayur Arora
Mr. Shreemay Panhalkar

ALWAYS LOOKING FOR GOOD UNDERGRAD, MS, AND PHD STUDENTS
CSE 5331

- DBMS models and implementation techniques
- This course goes into the details of the components of each module
- System-oriented as opposed to user-oriented
- Hands on projects implementing the internals of a dbms (e.g., buffer manager, disk sorting, concurrent transactions, ...)

Database Management Systems, S. Chakravarthy
CSE 6339

- Offered in Fall 20yy
- Data Stream Management Systems (DSMS)
- Stream data processing as opposed to stored data processing
- Sensors, RFID, and other new applications
- Importance of QoS and (near) real-time processing
- Scheduling, load shedding issues
- Commercial and research prototypes
 - Coral8, asper, streamBase, MavEstream, snoop, aleri, …
CSE 5334

- DATA MINING
- Preparing data for mining using preprocessing, data warehouses, OLAP
- Data mining primitives, languages, and system architecture;
- Data mining techniques including association rule mining, classification/prediction, and cluster analysis.
CSE 6331 (and others)

- Advanced topics in Database systems
- The topics may vary from offering to offering based on the instructor.
- Deals with new/advanced topics that are currently being researched
- I offer graph mining, stream processing, and cloud computing in spring
- Topics such as web db & XML, DB and information exploration have been offered
- I have offered data warehousing, data mining, and event processing as part of this course
CSE 6399 – Seminar course

- Advanced DB topics
- Typically a seminar course
- Reading and analyzing papers in new areas of research
- This semester I am offering this course on: Complex event & stream processing and information integration