Chapter 10
The Knee Joint

The Knee Joint

• Knee joint
 – largest joint in body
 – very complex
 – primarily a hinge joint

Bones

• Enlarged femoral condyles articulate on enlarged tibial condyles
• Medial & lateral tibial condyles (medial & lateral tibial plateaus) - receptacles for femoral condyles
• Tibia – medial
 – bears most of weight

Bones

• Fibula - lateral
 – serves as the attachment for knee joint structures
 – does not articulate with femur or patella
 – not part of knee joint

• Patella
 – sesamoid (floating) bone
 – imbedded in quadriceps & patellar tendon
 – serves similar to a pulley in improving angle of pull, resulting in greater mechanical advantage in knee extension

• Key bony landmarks
 – Superior & inferior patellar poles
 – Tibial tuberosity
 – Gerdy’s tubercle
 – Medial & lateral femoral condyles
 – Upper anterior medial tibial surface
 – Head of fibula

• Three vasti muscles of quadriceps originate on proximal femur & insert on patellar superior pole
 – insertion is ultimately on tibial tuberosity via patella tendon
• Iliotibial tract of tensor fasciae latae inserts on Gerdy’s tubercle
• Sartorius, gracilis, & semitendinosus insert just below the medial condyle on upper anteromedial tibial surface

• Semimembranosus inserts posteromedially on medial tibial condyle
• Biceps femoris inserts primarily on fibula head
• Popliteus originates on lateral aspect of lateral femoral condyle
• Tibial collateral ligament originates on medial aspect of upper medial femoral condyle & inserts on medial tibial surface
• Fibula collateral originates on lateral femoral condyle very close to popliteus origin & inserts on fibular head
Joints

• Knee joint proper (tibiofemoral joint)
 – classified as a ginglymus joint
 • Sometimes referred to as trochoginglymus joint
 • Joint internal & external rotation occur during flexion
 • Some argue for condyloid classification

• Patellofemoral joint
 – arthrodial classification
 – gliding nature of patella on femoral condyles

Joints

• Ligaments provide static stability
• Quadriceps & hamstrings contractions produce dynamic stability
• Articular cartilage surfaces on femur & tibia
• Menisci form cushions between bones
 – attached to tibia
 – deepen tibial fossa
 – enhance stability

Joints

• Medial meniscus forms receptacle for medial femoral condyle, Lateral meniscus receives lateral femoral condyle
 – Thicker on outside border & taper down very thin to inside border
 – Can slip about slightly, but held in place by various small ligaments
 – Medial meniscus - larger & more open C appearance
 – Lateral meniscus - closed C configuration

Joints

– Either or both menisci may be torn in several different areas from a variety of mechanisms, resulting in varying degrees of problems
 • Tears often occur due significant compression & shear forces during rotation while flexing or extending during quick directional changes in running
Joints

- Anterior & posterior cruciate ligaments
 - cross within knee between tibia & femur
 - vital in respectively maintaining anterior & posterior stability, as well as rotatory stability
- Anterior cruciate ligament (ACL) injuries
 - one of most common serious injuries to knee
 - mechanism often involves noncontact rotary forces associated with planting & cutting, hyperextension, or by violent quadriceps contraction which pulls tibia forward on femur

- Posterior cruciate ligament (PCL) injuries
 - not often injured
 - mechanism of direct contact with an opponent or playing surface
- Fibular (lateral) collateral ligament (LCL)
 - infrequently injured

Joints

- Tibial (medial) collateral ligament (MCL)
 - maintains medial stability by resisting valgus forces or preventing knee from being abducted
 - injuries occur commonly, particularly in contact or collision sports
 - mechanism of teammate or opponent may fall against lateral aspect of knee or leg causing medial opening of knee joint & stress to medial ligamentous structures

- Synovial cavity
 - supplies knee with synovial fluid
 - lies under patella and between surfaces of tibia & femur
 - “capsule of the knee”
- Infrapatellar fat pad
 - just posterior to patellar tendon
 - an insertion point for synovial folds of tissue known as “plica”
 - an anatomical variant that may be irritated or inflamed with injuries or overuse of the knee
Joints

- **Bursae**
 - more than 10 bursae in & around knee
 - some are connected to synovial cavity
 - they absorb shock or prevent friction

- **Extends to 180 degrees (0 degrees of flexion)**
 - Hyperextension of 10 degrees > not uncommon
 - Flexion occurs to about 140 degrees
 - With knee flexed 30 degrees or >
 - internal rotation 30 degrees occurs
 - external rotation 45 degrees occurs

- **Knee “screws home” to fully extend** due to the shape of medial femoral condyle
 - As knee approaches full extension tibia must externally rotate approximately 10 degrees to achieve proper alignment of tibial & femoral condyles
 - In full extension:
 - close congruency of articular surfaces
 - no appreciable rotation of knee
 - During initial flexion from full extension:
 - knee “unlocks” by tibia rotating internally, to a degree, from its externally rotated position to achieve flexion

- **Flexion**
 - bending or decreasing angle between femur & leg, characterized by heel moving toward buttocks

- **Extension**
 - straightening or increasing angle between femur & lower leg

Movements
Movements

- External rotation
 - rotary movement of leg laterally away from midline
- Internal rotation
 - rotary movement of lower leg medially toward midline
- Neither will occur unless flexed 20-30 degrees or >

Muscles

- Quadriceps muscle group
 - extends knee
 - located in anterior compartment of thigh
 - consists of 4 muscles
 - rectus femoris
 - vastus lateralis
 - vastus intermedius
 - vastus medialis

Muscles

- Q angle
 - Central line of pull for entire quadriceps runs from ASIS to the center of patella
 - Line of pull of patella tendon runs from center of patella to center of tibial tuberosity
 - Angle formed by the intersection of these two lines at the patella is the Q angle
 - Normally, angle will be 15 degrees or less for males & 20 degrees or less in females
 - Generally, females have higher angles due to a wider pelvis

Muscles

- Q angle
 - Higher Q angles generally predispose people in varying degrees to a variety of potential knee problems including lateral patellar subluxation or dislocation, patellar compression syndrome, chondromalacia, and ligamentous injuries
 - For people with above normal Q angles, it is particularly important to maintain high levels of strength & endurance in vastus medialis so as to counteract lateral pull of vastus lateralis
Muscles

• Hamstring muscle group
 – responsible for knee flexion
 – located in posterior compartment of thigh
 – consists of 3 muscles
 • semitendinosus - medial, internal rotator
 • semimembranosus - medial, internal rotator
 • biceps femoris - lateral, external rotator
 • Popliteus assist medial hamstrings in knee internal rotation

• Two-joint muscles
 – most effective when either origin or insertion is stabilized to prevent movement in direction of the contacting muscle
 – To a degree, muscles are able to exert greater force when lengthened than when shortened
 – Hamstring muscles & rectus femoris are biarticular (two-joint) muscles

Muscles

• Ex. sartorius muscle
 – increases its total length & becomes a better flexor at knee when pelvis is rotated posteriorly & stabilized by abdominal muscles
 • exemplified by trying to flex knee & cross the legs in the sitting position
 • one usually leans backward to flex legs at knees
 – Football kicker invariably leans well backward to raise & fix the rectus femoris origin to make it more effective as a knee extensor

• Gracilis, sartorius, & semitendinosus join together distally to form pes anserinus
 – attaches to anteromedial aspect of proximal tibia below the level of tibial tuberosity
 – Their attachment & posteromedially line of pull enable them to assist with knee flexion particularly once the knee is flexed & hip is externally rotated
 – Medial & lateral gastrocnemius heads attach posteriorly on medial & lateral femoral condyles
 – assist with knee flexion
Muscles

Knee joint muscles location

- **Anterior** - primarily knee extension
 - Rectus femoris
 - Vastus medialis
 - Vastus intermedius
 - Vastus lateralis

- **Posterior** - primarily knee flexion
 - Biceps femoris
 - Semimembranosus
 - Semitendinosus
 - Sartorius
 - Gracilis
 - Popliteus
 - Gastrocnemius

Nerves

- **Femoral nerves**
 - innervates the knee extensors (quadriceps)
 - rectus femoris
 - vastus medialis
 - vastus intermedius
 - vastus lateralis

- **Sciatic nerve**
 - tibial division
 - semitendinosus, semimembranosus, biceps femoris (long head)
 - common peroneal (fibular) division
 - biceps femoris (short head)
Quadriceps Muscles

- Quadriceps muscles - vital in jumping
 - functions as a decelerator
 - when decreasing speed to change direction
 - when coming down from a jump
 - eccentric contraction during decelerating actions
 - controls slowing of movements initiated in previous phases of the sports skill

Quadriceps Muscles

- Rectus femoris (two-joint), vastus medialis, vastus intermedius, vastus lateralis (largest)
 - All attach to patella then to tibial tuberosity via patellar tendon
 - All superficial & palpable except vastus intermedius (under rectus femoris)
 - Strength or power may be indicated by vertical jump test
 - Generally desired to be 25% to 33% stronger than hamstring group

Quadriceps Muscles

- Strength & endurance is essential for maintenance of patellofemoral stability
 - often a problem
 - quads are particularly prone to atrophy when injuries occur
 - may be developed by resisted knee extension activities from a seated position
 - functional weight bearing activities such as step-ups or squats are particularly useful for strengthening & endurance

Rectus Femoris Muscle

- Flexion of hip
- Extension of knee
- Anterior pelvic rotation
Vastus Lateralis Muscle

Extension of knee

Vastus Intermedius Muscle

Extension of knee

Vastus Medialis Muscle

Extension of knee

Hamstring Muscles

- Hamstring muscle group
 - Semitendinosus
 - Biceps femoris
 - Semimembranosus
Hamstring Muscles

- Hamstring muscle strains very common
- “Running muscles” function in acceleration
- Antagonists to quadriceps muscles at knee
- Named for cordlike attachments at knee
- All originate on ischial tuberosity of pelvis
- Semitendinosus inserts on anteromedial tibia
- Semimembranosus inserts on posteromedial tibia
- Biceps femoris inserts on lateral tibial condyle & head of fibula

Semitendinosus Muscle

- Flexion of knee
- Extension of hip
- Internal rotation of hip
- Internal rotation of flexed knee
- Posterior pelvic rotation

Semimembranosus Muscle

- Flexion of knee
- Extension of hip
- Internal rotation of hip
- Internal rotation of flexed knee
- Posterior pelvic rotation

Biceps Femoris Muscle

- Flexion of knee
- Extension of hip
- External rotation of hip
- External rotation of flexed knee
- Posterior pelvic rotation
Popliteus Muscle
- Flexion of knee
- Internal rotation of flexed knee

Knee Extension
- Agonists
 - Rectus Femoris
 - Vastus Lateralis
 - Vastus Intermedius
 - Vastus Medialis

Knee Flexion
- Agonists
 - Biceps Femoris (Long & Short Head)
 - Semitendinosus
 - Semimembranosus

Knee Internal Rotation
- Agonists
 - Semitendinosus
 - Semimembranosus
 - Popliteus
Knee External Rotation

- **Agonists**
 - Biceps Femoris