Warning Concerning Copyright Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.
Borrower: IUA

Date Req. Rec.: 20080519

Journal Title: Theory and practice ; newsletter-journal of the Music Theory Society of New York State.

Volume: 32 Issue: 2007 Pages: 213-238

Article Author:

Article Title: Hunt, Graham G; Elements of sonata theory; Norms, types, and deformations in the late-eighteenth-century sonata (review)

Imprint: Fredonia, N.Y. ; The Society, 1975-

ILL Number: 42879615

Call #: ML1 .T24

Location:

Patron: Hunt, Graham

Charge
Maxcost: 0.00 RECIP

Fax: 817-272-3392
Ariel: 129.107.67.88
Odyssey: 129.107.67.176
Review


Reviewed by Graham G. Hunt

Some ten years in the making, *Elements of Sonata Theory* is a milestone publication, outlining a comprehensive system for analyzing the wide spectrum of sonata-form movements written in the late eighteenth century. It centers on two concepts developed in separate studies by the two authors: rotational form and the medial caesura. Based on their extensive analyses of (literally) thousands of pieces, Hepokoski and Darcy codify "Sonata Theory" as a background set of norms or options available to the sonata composer, norms that the present-day analyst can also use as a starting point when discerning the form of a given piece. Less-frequently-used options and "deformations" to these norms can thus be defined and explored through their extensive system. Rather than being a critique of existing analytical systems per se, the approach was cultivated primarily from the authors' exhaustive research of late-eighteenth-century pieces, by absorbing the music itself and generating the theory from the pieces' norms as well as their idiosyncrasies. As the authors themselves admit, the method is intended as a "work-in-progress," not a final fix to certain "inadequately conceived" previous theories (9); indeed, they welcome its constant "testing and refinement" through future analyses. Therefore, it represents a starting point for a new generation of analyses, including the projection of Sonata Theory forward into nineteenth-century (and possibly even twentieth-century) works, a topic the authors touch on from time to time, but which remains tantalizingly open to future studies.

Several new (or "previously passed over") concepts central to Sonata Theory were first presented in the authors' "sneak peek" article of 1997: the *medial caesura* (MC), *essential expositional closure* (EEC), and *essential structural closure* (ESC). Another concept, rotational form, first introduced by Hepokoski in 1993, has been employed in recent analyses. All of these principles will be explained shortly. Composers' normative, slightly modified, or deformational treatment of these components proves central to the structural layout, and thus any hermeneutic interpretation, of any piece. In addition, Hepokoski and Darcy pro-
pose that the absence or modification of a norm suggests a conscious decision on the part of the composer, who was writing the piece in dialogue with the generic norms. These norms themselves were, of course, constantly evolving—Haydn’s idea of “typical” early in his career differed slightly from Beethoven’s (15). In addition, exceptional practices, particularly those of Haydn’s, can be illuminated by historical consideration, such as a composer experimenting with a particular idiosyncrasy early in one’s career and adopting it almost as one’s own norm, or lower-level default, at a later phase in that career.

This essay will be divided into two parts. The first portion will summarize the book’s contents and familiarize the reader with some of the central terms and concepts of Sonata Theory. The second portion will then illustrate the theory by critically applying it to particularly complex and/or ambiguous types of sonatas: Haydn’s symphonic rondos, pieces erroneously cited as having a “reverse recapitulation” and three-key sonata expositions.

**Sonata Theory**

Following a brief outline of the book’s contents (Chapter 1), the authors present an overview of the form as a whole in Chapter 2. Example 1, a reproduction of their Figure 2.1a and 2.1b, illustrates the important idea of rotations: exposition as rotation 1 (the “referential” rotation), development potentially as rotation 2 (if the opening theme begins the development), and recapitulation as the final rotation. Each rotation is an ordered cycle through the series of thematic modules first defined in the exposition, with variations (or omissions) of these modules possible in subsequent rotations (the most important variation, of course, being the transposition of secondary and closing materials to the tonic key in the recapitulatory rotation). The primary-theme zone (P) leads to the transitional zone (TR), which will normally proceed to a medial caesura (MC), articulate two MCs, or omit the MC altogether. The first possibility creates the most common option in eighteenth-century sonatas, the two-part exposition, in which the secondary-theme zone (S) immediately follows the MC. (The second and third possibilities result in a trimodular block (TMB) and continuous exposition respectively, which will be discussed in more detail below.) The first-level default MC is a half-cadence in the secondary key (V:HC in major-key expositions, III:HC in minor-key expositions); less common MCs are the second-level default I:HC and third-level default V:PAC. The MC is accompanied by a textural break—either silence or at least a reduction of musical texture. The second part of the two-part exposition then attempts to achieve the goal of the entire exposition, the moment of essential expository closure (EEC), which is the first satisfactory PAC in the new key. The EEC—which can often be ambiguous, repeated, or omitted altogether—also launches the final zone of the two-part exposition, the closing zone (C). The trajectory toward EEC in the exposition is mirrored by the trajectory toward essential structural closure (ESC) in the recapitulation, which is the S zone’s first satisfactory PAC in the tonic key.

An important concept related to the medial caesura (Chapter 3) is caesura-fill (CF), which links the V of a V:HC MC to the I beginning the S theme,
a. Exposition only: the Essential Expositional Trajectory (to the EEC)

- **MC**
  - Continuation modules (series of energy-gaining modules)
  - Energy-gain + Acceptance of P
  - Often forte
  - Either modulatory or non-modulatory

- **P**
  - Launch
  - Proposes the main idea for the sonata
  - Tonic key

- **S**
  - Relaunch
  - New key
  - Usually piano
  - Often lyrical, etc.

- **C**
  - Postcadential Appendix or set of "accessory ideas"
  - May be multisectional (C1, C2, etc.) and of varying lengths. Usually forte or gaining in rhetorical force.

Exposition, Part 1

Exposition, Part 2

b. The entire structure: the Essential Sonata Trajectory (to the ESC)

- **MC**
  - Final cadence

- **TR**
  - Development
  - Often P or TR-dominated
  - Perhaps tonal

- **S**
  - Recapitulation

- **C**
  - Coda

Exposition

Development

Recapitulation

**Figure 2.1** The Generic Layout of Sonata Form

*Example 1.* Hepokoski and Darcy's generic diagrams for sonata form
(Figure 2.1, p. 17).
pose that the *absence* or modification of a norm suggests a conscious decision on the part of the composer, who was writing the piece in dialogue with the generic norms. These norms themselves were, of course, constantly evolving—Haydn’s idea of “typical” early in his career differed slightly from Beethoven’s (15). In addition, exceptional practices, particularly those of Haydn’s, can be illuminated by historical consideration, such as a composer experimenting with a particular idiosyncrasy early in one’s career and adopting it almost as one’s own norm, or lower-level default, at a later phase in that career.4

This essay will be divided into two parts. The first portion will summarize the book’s contents and familiarize the reader with some of the central terms and concepts of Sonata Theory. The second portion will then illustrate the theory by critically applying it to particularly complex and/or ambiguous types of sonatas: Haydn’s symphonic rondos, pieces erroneously cited as having a “reverse recapitulation” and three-key sonata expositions.

**Sonata Theory**

Following a brief outline of the book’s contents (Chapter 1), the authors present an overview of the form as a whole in Chapter 2. Example 1, a reproduction of their Figure 2.1a and 2.1b, illustrates the important idea of rotations: exposition as rotation 1 (the “referential” rotation), development potentially as rotation 2 (if the opening theme begins the development), and recapitulation as the final rotation. Each rotation is an ordered cycle through the series of thematic modules first defined in the exposition, with variations (or omissions) of these modules possible in subsequent rotations (the most important variation, of course, being the transposition of secondary and closing materials to the tonic key in the recapitulatory rotation). The primary-theme zone (P) leads to the transitional zone (TR), which will normally proceed to a *medial caesura* (MC), articulate two MCs, or omit the MC altogether. The first possibility creates the most common option in eighteenth-century sonatas, the *two-part exposition*, in which the secondary-theme zone (S) immediately follows the MC. (The second and third possibilities result in a *trimodular block* (TMB) and *continuous exposition* respectively, which will be discussed in more detail below.) The *first-level default* MC is a half-cadence in the secondary key (V:HC in major-key expositions, III:HC in minor-key expositions); less common MCs are the second-level default 1:HC and third-level default V:PAC. The MC is accompanied by a textural break—either silence or at least a reduction of musical texture. The second part of the two-part exposition then attempts to achieve the goal of the entire exposition, the moment of *essential expositional closure* (EEC), which is the first satisfactory PAC in the new key. The EEC—which can often be ambiguous, repeated, or omitted altogether—also launches the final zone of the two-part exposition, the closing zone (C). The trajectory toward EEC in the exposition is mirrored by the trajectory toward *essential structural closure* (ESC) in the recapitulation, which is the S zone’s first satisfactory PAC in the tonic key.

An important concept related to the medial caesura (Chapter 3) is *caesura-fill* (CF), which links the V of a V:HC MC to the I beginning the S theme,
a. Exposition only: the Essential Expositional Trajectory (to the EEC)

- **MC**
  - Continuation modules (series of energy-gaining modules)

- **TR**
  - Energy-gain + Acceptance of P
  - Often forte
  - Either modulatory or nonmodulatory

- **P**
  - Launch
  - Proposes the main idea for the sonata

- **S**
  - Relaunch
  - New key
  - Usually piano
  - Often lyrical, etc.

- **C**
  - Posteadential Appendix
  - Set of "accessory ideas"
  - May be multisectonal (C1, C2, etc.) and of varying lengths
  - Usually forte or gaining in rhetorical force

Tonic key

Exposition, Part 1

b. The entire structure: the Essential Sonata Trajectory (to the ESC)

- **MC**
  - Final cadence

- **TR**
  - Development
  - Often P- or TR-dominated
  - Perhaps modal

- **S**
  - Recapitulation
  - S, at agent, carries out the central generic task of the sonata—securing the ESC: a structure of accomplishment

- **C**
  - Coda

Exposition

One central mission: laying out the strategy for the eventual attainment of the ESC: a structure of promise.

Development

Recapitulation

**Figure 2.1** The Generic Layout of Sonata Form

*Example 1. Hepokoski and Darcy’s generic diagrams for sonata form (Figure 2.1, p. 17).*
and is rich with interpretive power: to what extent does the caesura-fill problematize the first-level default MC? A specific type of CF, the “juggernaut” caesura-fill, in which the energy of the TR zone “spills over” into the MC, lasting all the way into the S theme, can be seen in an early Beethoven piece, the first movement of his Second Symphony, mm. 71–72 (45). Like a spot in op. 1, no. 2 that the authors discuss in their 1997 article, this situation could be interpreted as an elided, “brute-force” V:PAC MC; yet, as the authors emphasize throughout the book, we should not necessarily attempt to determine the correct answer, but instead interpret the moment hermeneutically and historically. In this case, the sudden drop to piano on the downbeat of m. 73 (the beginning of the S theme proper) provides welcome, though only temporary, relief from the unrelenting, characteristically Beethovenian energy of the TR zone: the first four measures of the S theme seem to say, “relax; we are free from the turmoil of the TR zone”; yet the energetic burst four measures later responds, “No! We’re not quite done with TR-like energy!” Indeed, the S zone is infused with a tense energy that never truly relents, and as the authors themselves state, Sonata Theory (specifically in this case, the awareness of typical features of TR and MC) “helps us to articulate what Beethoven appears to be doing at this moment.”

Another prototype insufficiently covered in the existing literature, but discussed briefly by Hepokoski and Darcy as Chapter 4, is the “continuous exposition,” an exposition without a (satisfactory) MC—a pattern of which Haydn was particularly fond. Since the secondary-theme zone (S) is defined by the MC, continuous expositions have no S zone; instead, at some point, the TR zone moves into a section of Fortspinnung (FS), which then leads to EEC. The “point of conversion” where the transitional material, having lost the capability of articulating an MC, moves into the FS, is termed by the authors as “=>FS.” Continuous expositions are particularly problematic because of the ambiguity produced by “bait-and-switch” tactics, in which an MC is approached, and occasionally even articulated, before the expected two-part exposition is abandoned by somehow “swerving away” from an S-theme proper (55). However, when this potential MC is a third-level default III:PAC or V:PAC (too early to be EEC), “delicious ambiguities” (61) between two-part and continuous expositions arise, particularly when what follows this potential MC has S-theme characteristics. As discussed by the authors, mm. 24–28 in the first movement of Mozart’s String Quartet, K. 421 exemplify this tension between two-part and continuous expositions that, in the authors’ opinion, should not be discarded or dismissed by deciding one way or the other and leaving it at that. Rather, the terminology Sonata Theory proposes gives the analyst a way to “describe the nuances of the situation in question,” in this case the problematic MC and S-theme that follows it.

The following three chapters treat the individual zones of the two-part exposition. Chapter 5 deals with the Primary-theme zone (P). It is in this chapter that the authors describe their numbering system for subdividing each of the zones in a sonata exposition: a superscript to the zone letter increments to the next whole number only if a PAC is reached (P^1 [PAC] P^2); separate sections prior to a PAC increment a number after a decimal in the superscript (P^1.1 P^1.2 [PAC] P^2.1, etc.). They caution that this is not a “rigid system,” but instead a “conceptual tool to be
used by the individual analyst as he or she sees fit” (72). While they express their displeasure with William Caplin’s sentence structure for being too narrow and inflexible, they note that, for example, the presentation module of a sentential P-theme could be labeled P_{1.1} and the continuation as P_{1.2}. Chapter 6 discusses the Transition (TR) zone, including the sometimes troublesome question of where, precisely, it begins. Predictably, the authors urge flexibility in proposing a solution, although they discourage beginning TR in the middle of a phrase. The authors then discuss independent vs. developmental transitions, thematic statements that “dissolve” into obvious TR material, and problematic TRs that lack typical TR rhetoric or energy-gain. One type of problematic TR, the “de-energizing transition” (116), evolved from the late eighteenth-century “blocked medial caesura” and was often used in the nineteenth century by composers like Schubert and Brahms. I will discuss this concept below in works by Brahms, as well as Brahms’s tendency to compensate for this energy loss later in the exposition.

Chapter 7 outlines typical S-theme types (an impressive, almost exhaustive array of rhetorical categories, including the “bustling,” “virtuosic,” “multi-modular,” and “learned/fugal”) and addresses the issue of the location of EEC (essential expository closure). As noted above, EEC is the culmination of the S zone, and by definition, the “first satisfactory perfect authentic cadence that proceeds onward to differing material” (120). This definition, of course, allows for interpretation as well as deformation (for example, an “attenuated” PAC, or weakened EEC with a defensibly argued IAC in the new key). The chapter that follows (Chapter 8) deals with such complications, focusing primarily on EEC deferral or weakening, and also with one of the book’s most thought-provoking concepts: the trimodular block (TMB; 170ff.).

The TMB occurs when two medial caesurae appear. The first MC leads to TM1, an S theme (or S-like material) which is somehow flawed and proves unable to secure the EEC; TM2, usually a more unstable, TR-like section, then leads to a second medial caesura, which sets up TM3, the successful S which does in fact progress toward EEC. The first movement of Beethoven’s op. 2, no. 3 Piano Sonata is cited as a prototypical example (MC, TM1 in v, TM2 re-energizing the texture and leading to a second MC, followed by TM3, the “real S” in the normative key of V.) Later, however, the TMB would often be used in conjunction with the so-called three-key exposition (177), given the fact that the “flaw” of TM1 and/or TM2 could be that it is in a lower-level default key (the second key of the three-key exposition). Schubert, in particular, adopted this procedure, but so, too, did Brahms. The latter sometimes used the “de-energizing transition” (44, 116) in conjunction with the TMB—e.g., in the Clarinet Sonata, op. 120, no. 1 (first movement) and in Symphony no. 2 (first movement), as I will outline below. The authors provide terminology and generic standards for Classical-period techniques such as this, that can in turn be used to consider similar techniques by Romantic-era composers, and, perhaps, to help support claims of the influence of Schubert on Brahms.10

Chapter 9 deals with the closing zone, and typical characteristics such as P-based C themes and the distinction of the C-zone materials from S-zone materials. The authors refer to the latter as “the ‘non-S-ness’ of C” (181). An important
concept discussed in the chapter is a theme with the character of a closing theme that appears before EEC, yet does not seem to belong in the S zone proper: this is an “S” theme, and its presence before EEC suggests some sort of rhetorical “breakdown” in the S zone (190–191). The equivalent in a continuous exposition is the Cpre-EEC theme.

In keeping with their ideas of rotational form in sonata-form pieces, the authors suggest viewing the development section (Chapter 10) as either rotational, non-rotational, or a variant thereof, based on the deployment of exposition-space material and its ordering. A development is considered rotational if representative(s) from Part 1 of the exposition (P and/or TR) AND representative(s) from Part 2 of the exposition (S and/or C) are revisited in their expositional order. This is no random choice, as Sonata Theory centers around the two-part exposition, the two parts separated by the medial caesura. The possibility of P being “written over” by a new theme (or episode) at the outset of a rotational development also exists, if the material following it fulfills the rotational definition. Rotational developments create a “triple” rotation for the overall sonata movement: exposition (rotation 1), development (rotation 2), and recapitulation (rotation 3). Hepokoski and Darcy take Caplin to task again in this chapter, criticizing the model he adopted from Ratz for the laying out of the development as “pre-core,” “core,” and “retransition,” with the focus on the central core that contains sequence-blocks that lead to the dominant-lock and retransition. While acknowledging that this prototype is effective for “a handful of straightforward development sections around 1800,” they conclude that the system is “underdeveloped and overly reliant on only one typical aspect of developmental procedure, sequence-blocks” (229). They immediately follow this up with their own overview of the typical “pathways” through the developmental space: (1) the optional link from the exposition; (2) the entry or preparation zone (often P-based); (3) the central action zone (the “turbulent” section of the development); and (4) the retransition/dominant-lock.

Chapter 11 deals with the next rotation of the sonata, the recapitulation, which (normally) revisits all the expositional materials, with the Part 2 materials (S and C) transposed to the tonic key—the tonal resolution. Unusual situations and deformations are also discussed, for example: re-ordering materials, changing the MC, two-part expositions that become continuous recapitations (these invoke the possible rhetoric that the composer is “solving a problem” from the exposition, and the authors encourage the analyst to consider this), and non-resolving recapitations that fail to achieve ESC. Hepokoski himself considers this last phenomenon, also rife with hermeneutic possibilities, in a separate article. A useful way of conceptualizing the review of expositional materials is the authors’ concept of “crux” and “correspondence measures” (239). At some point in the recapitulation, usually at or near the MC, the recapitulation “lines up” with the exposition (usually after skipping or adding measures in a modified TR section), which is the moment of crux. Any modifications (additions or subtractions) to measures before and after this are termed “pre-crux alterations” and “post-crux alterations” respectively; furthermore, the recapitulation space, and therefore sonata space, is considered complete once the “correspondence measures” with the exposition (e.g.,
After discussing non-normative openings to recapitulations (Chapter 12), the authors cover sections outside sonata space, the coda and the introduction (Chapter 13), minor-mode sonatas (Chapter 14), and generic tendencies for the overall three- and four-movement sonata cycle (Chapter 15). Hepokoski and Darcy call the standard “sonata-allegro” form (containing exposition, development, and recapitulation) a Type 3 sonata; the remainder of the book outlines the other four sonata types: Type 1 (Chapter 16), a two-rotation sonata without a development (sometimes referred to as “sonatina” form); Type 2 (Chapter 17), a two-rotation “binary” sonata with a development and partial tonal resolution of expositional materials (commonly used by Scarlatti); Type 4 (Chapter 18), the sonata-rondo; and Type 5 (Chapters 19–22), the concerto sonata. The authors view Types 1 and 2 not as “flawed” versions of the generic Type 3 sonata, but rather as other possible options that composers chose to use. The Type 5 (concerto) sonata, using Mozart’s piano concertos of the 1780s as the prototype, delineates the material heard in the “opening ritornello” (a proto-exposition which they term R1) and the “solo exposition” (which they term S1) according to the Type 3 labels of P, TR, MC, etc., with a prefix indicating the first section in which they were heard. For example, the first S module heard in the opening ritornello is labeled R1:S1, whereas a new S-theme introduced in the solo exposition is S1:S1. The authors could be taken to task for their notation becoming overly cumbersome at this point, yet conceptually, this parsing of materials becomes almost indispensable when dealing with the complex array of modules in Type 5 movements. In addition, it simultaneously remains faithful to the Type 3 concepts retained in concerti while allowing for the double-rotational format of R1 and S1.

Utility of the Theory

When a groundbreaking analytical method is introduced, the question naturally arises: does this represent an advance or improvement over existing methods? In regard to Sonata Theory, the answer, in my opinion, is a resounding yes—Sonata Theory takes into account the pieces themselves, historical theoretical accounts (Koch, Marx, et al.), and critical re-appraisals of recent scholarship (Rosen, Ratner, Caplin). The end result is a comprehensive system that accounts for a range of structures related to sonata form, from the “two-part sonata” (Type 1) to the massive Mozartean concerto form (Type 5). But a larger question is: what can the new analytical method tell us beyond the classification of individual sections (zones) and overall forms (types)? The authors encourage the analyst to broaden their inquiry by considering deviations from the norm from a rhetorical perspective: what kind of rhetorical expressions do the surprising formal twists create for the listener? Furthermore, broader analytical conclusions can be made by considering composers’ particular tendencies, idiosyncrasies, or historical trends, using the first-level defaults as a benchmark. For example, Haydn’s “playful” or “witty” style has been well-documented, specifically regarding formal ambiguity, but exactly what kind of structural games is he playing with the listener? What precisely makes the structure of the “sonata-rondo” London symphony
finales so hard to pin down? While these questions can be, and have been, considered before the publication of *Elements of Sonata Theory*, more concrete, historically grounded analysis of such pieces can be done by employing the Sonata Theory method. I wish to address these questions and demonstrate the potential merits of Hepokoski and Darcy’s analytical method in the remainder of this essay, considering these Haydn works as well as works by Brahms, in order to address the potential uses of Sonata Theory when applied to works outside the late eighteenth century.

**Haydn and the Rondo**

Malcolm Cole and Rudolf von Tobel claim that the earliest “sonata-rondo” movement ever composed was the last movement of Mozart’s String Quartet in C, K. 157. However, Stephen Fisher (with whom the authors generally agree when discussing Haydn’s rondo procedures) debunks this claim, as do Hepokoski and Darcy with their redefinition of the terms “rondo” and “sonata-rondo.” In their Table 18.1 (reproduced in Example 2) Hepokoski and Darcy present a continuum ranging from a simple “rondeau” to a “rondo” to a “Type 4” sonata (which is a mixture of rondo and type 3 sonata procedures). All three of these forms involve a number of rotations through a recurring tonic refrain and an internal section (“episode” or “couplet” in earlier rondo terminology). In Hepokoski and Darcy’s

<table>
<thead>
<tr>
<th>Rondeau</th>
<th>Rondo</th>
<th>Sonata-rondo (Type 4)</th>
<th>[Sonata]</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Refrain” and “couplets”</td>
<td>“Refrain” and “episodes”</td>
<td>Sonata terminology is preferable: P TR ’ S / C</td>
<td></td>
</tr>
<tr>
<td>Alternation of simple melodic structures (period, hybrid, or group of phrases)</td>
<td>Alternation, but of somewhat more complex/expanded structures (esp. binary, rounded binary, sometimes with repeats)</td>
<td>TR-zone follows the initial “restrain” (refrain = P or Prf)</td>
<td></td>
</tr>
<tr>
<td>Few or no links or retransitions between the sections</td>
<td>More elaborate retransitions as the episodes return to the refrain, but no TR between A and B</td>
<td>First rotation is explicitly structured as the exposition of a sonata, with RT at its end</td>
<td></td>
</tr>
<tr>
<td>Refrain usually returns literally</td>
<td>Returns of refrain are sometimes truncated</td>
<td>A later rotation recapitulates and resolves the expositional rotation</td>
<td>May be in dialogue with the Type 1, the expanded Type 1, the Type 3, or the Type 5 sonata</td>
</tr>
</tbody>
</table>

*Example 2.* Hepokoski and Darcy’s continuum of formal categories (Table 18.1, p. 391).
rondeau, both the refrain and the episodes involve simple internal forms (e.g., periods, sentences) and no (or few) retransitions leading back to the refrain. To achieve “rondo” status, a piece’s individual sections must have more complex internal forms (such as binary or rounded binary), and, more importantly, retransitions preparing for the refrain (normally reaching and/or standing on the “active dominant” chord, $V_A$); these rhetorically say “Get ready, dear listener: here it [the refrain] comes again!” (398). While a “rondo” by this definition might have a first episode (“B”) move to the dominant key and be revisited as the third episode in the tonic key (hinting at the ever-troublesome “sonata principle” of Edward Cone, which the authors critically discuss in 242–5), it cannot be a true sonata-rondo (Type 4) unless the first rotation resembles a Type 3 exposition, with a proper $P$ TR’ $S$ EEC sequence (or a $P$ TR$\Rightarrow$FS EEC sequence indicating a continuous exposition), and the third rotation more or less recapitulates this sequence in the tonic, as in a Type 3 recapitulation. The second rotation will, of course, begin with the refrain and move to either an episode or developmental section. A prototypical example of the Type 4 sonata can be found in the final movement of Mozart’s Piano Sonata, K. 333. (A variant of the Type 4 sonata, the Type $4^1$ mixture, omits this “second rotation” and proceeds directly to the tonic recapitulation after completing the first rotation, as in a Type 1 sonata.) By this definition, therefore, the finale of Mozart’s String Quartet, K. 157, previously considered to be the “first” sonata-rondo, falls in the category of a rondeau, since it lacks retransitions before each refrain and also lacks a true sonata-like “TR” zone before the dominant-key first episode: A B($V$) A C A B($I$) A Coda. It nudges along the continuum slightly toward the Type 4 sonata (395) because of its sonata-like recapitulation of the B section in the tonic; Hepokoski and Darcy specifically call this construction a “symmetrical three-couplet rondeau” (394). Thus, the authors emphasize the nature of a potential sonata-rondo’s expositional procedures more than the recapitulation of previously off-tonic material in the third rotation. As will be noted below, this accommodates Haydn’s habit of drastically recomposing his sonata-rondo “recapitulations,” particularly in his later works.

While Hepokoski and Darcy maintain a flexible analytical philosophy throughout their rondo discussion, one of their analyses seems uncharacteristically inflexible, that of Mozart’s Piano Sonata, K. 281, third movement (1775). It is cited in conjunction with their “Type $4^{1\text{-exp}}$,” in which a development and/or episode appears in the second (“recapitulatory”) rotation, generally somewhere after the rotation’s initial $P^r$ (the refrain) and before rejoining the recapitulatory TR zone, thus expanding the Type $4^1$. In a footnote, they point out that a similar expansion to a Type $4^3$ (which is the default Type 4 sonata-rondo) is quite rare, i.e. Rotation 1: $P^r$ TR’ $S$ C/RT (in $V$), Rotation 2: $P^r$ – development/episode RT, Rotation 3: $P^r$ – extra development/episode – TR’ $S$ C/RT (all in tonic), Rotation 4: $P^r$ (and/or coda). Their example of this “Type $4^{3\text{-exp}}$” (though they apparently never employ this label) is the last movement of the Mozart K. 281, yet this piece appears to have five rotations, with a modified appearance of $P^r$ in m. 114 (in the left hand underneath a dominant trill in the right hand, and missing its “codetta” material from mm. 8–17) launching a possible fourth rotation, and the final $P^r$ in m. 143 launching the final rotation (what the authors term Rotation 4). (See
Example 3, a graph of this interpretation. The authors term the $P^{fr}$ in m. 114 merely "an internal reference to $P^{fr}$" (409 n. 41) that leads to the tonal resolution of $S$ in m. 124. However, considering m. 114 an actual return of $P^{fr}$ (prepared by a retransition), though modified and missing its codetta, creates the five-rotation scheme shown in Example 3; it is somewhat surprising that the authors do not acknowledge this possible alternate solution (perhaps because it does not fit their just-defined Type 4.3-exp), in the spirit of their advocacy for analytical flexibility. In fact, they caution that "one should not misinterpret this finale as a ‘nine-part sonata-rondo’ that lacks a fourth return of A" (409 n. 41), which is essentially the model proposed here (with a fourth return of A [$P^{fr}$]). Similarly, their other example of the "Type 4.3-exp," the last movement of Mozart's Violin Concerto no. 3, K. 216, contains a clear, though abbreviated, occurrence of the period-structured $P^{fr}$ at m. 329 after the episode in rotation 3, yet it is interpolated after a retransition (m. 300) and a theme from Rotation 1’s TR zone (m. 308), and BEFORE the tonic resolution of the $S$ theme. Furthermore, this refrain is only one half of the first phrase of the original $P^{fr}$ period, and the $S$ theme (in I) interrupts it. Though these two pieces could be interpreted as either "five-rotation Type 4s" or Type 4.3-exp's, the authors do not acknowledge this alternate solution, or the potential flaw in their admittedly rare expanded Type 4.17


Nevertheless, the authors’ proposed “continuum” from rondeau to rondo to Type 4 provides a helpful way to trace the use of the rondo and sonata-rondo in Mozart and Haydn’s music throughout the 1770s, 80s, and 90s, when both composers used rondo form in some of their final movements. Specifically, the symphonic "rondo" finales of Haydn, particularly those in his London symphonies,
present challenges because of his compositional wit and freedom in the treatment of form (indeed, the authors devote an entire subsection to “Haydn’s Treatment of Type 4 Finales,” 413–417). Example 4 shows Haydn’s symphonic finales from 1766 (the beginning of his Sturm und Drang phase) onward as they would be situated on Hepokoski and Darcy’s “rondo continuum.” This chart is not intended to pigeonhole these movements, but rather to show roughly where Haydn’s symphonic rondo finales fall on the continuum, and provide a starting point for a discussion of Haydn’s development of the symphonic rondo finale from 1771 through 1795; the extra columns in Example 4 are designed to accommodate the movements that fall somewhere between two of the formal types. One immediately notices a general trend rightward on the continuum as Haydn progresses toward the London symphonies—even his earlier rondeaus (42, 51, and 55) “nudge” their way toward rondo form because their internal sections have complex forms (binary or rounded binary), yet they lack retransitions before each return of A. In addition, these finales evoke yet another formal type, theme and variation form, by providing a variation of the refrain with each recurrence; this produces what Elaine Sisman has termed the “rondo-variation” hybrid (which I have indicated with a “v” on the chart). In fact, in the 51 finale, Haydn immediately follows the first refrain with a full-fledged variation of the refrain, creating the expectation of a theme and variations (this being “Variation 1”), before veering away from theme and variation form by moving to a B section and initiating the rondeau form, A A¹ B A² C A³ coda in this case.

<table>
<thead>
<tr>
<th>Rondeaus</th>
<th>mix Rondo</th>
<th>Rondo</th>
<th>mix (Sonata elements) and/or Type 4 ==rondo conv.</th>
<th>Type 4</th>
<th>Type 4 - 3 uncet</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>42v (1771)</td>
<td>64 (1773² 757)</td>
<td>61 (1776)</td>
<td>66 (1778)</td>
<td>69 (1778)</td>
<td>orphan 1a-4 (1781)²:</td>
<td></td>
</tr>
<tr>
<td>51v (1771/3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55v (1774)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 (1778)</td>
<td>75 (1780)</td>
<td>78 (1782)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 (Nov 1784)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paris</td>
<td>83m (1785/6)</td>
<td>88m (1787)</td>
<td>82, 83m, 84, 86 (1785/6)</td>
<td>90m, 91m, 92 (1785/9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>96 (1791)</td>
<td>93 (1791) - 4, TMB</td>
<td>94 (1791)x - 9-part</td>
<td>95 (1791)x-4, fugue recap</td>
<td>98 (1792)-TMB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97 (1792)²:</td>
<td>99 (1793)m</td>
<td>100 (1793/4)m²</td>
<td>101 (1793/4)m²</td>
<td>102 (1794)m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103 (1794)m²</td>
<td>104 (1795)m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Example 4. Haydn’s symphonic finales (1766–1795) on the “rondo continuum.”*
From this perspective, Haydn seems to have developed a preference for adding retransitions and using complex internal forms in his symphonic rondo finales to varying extents in the 1770s (creating some rondeaus with rondo elements and one "pure" rondo, 61). However, rather then settling upon the pure rondo as his default option for the rondo finale, he also begins to mix in Type 3 elements beginning in at least 1773. The dating of Symphony no. 64 is crucial in this regard, as some sources date it 1773 and others circa 1775.20 The 64, 66, and 69 finales introduce sonata exposition-like elements into the first rotation: the refrain theme leads to an energetic, TR-like section that moves to the dominant key area (Haydn previously avoided the dominant key in his earlier rondeau and rondo “B” sections, preferring vi, IV or i). Once the refrain returns after these “expositions,” launching the second rotation, the possibility of a Type 4 sonata-rondo is invoked; however, since none of the Expositional materials are brought back in the third rotation, Haydn veers back to the “pure rondo” track by moving instead to either a third episode (as in 64 and 66) or directly to a coda. This practice of creating one formal expectation and changing course “midstream” is typical of Haydn and his “game-like approach” to the finale, essentially “rid[ing] the dividing lines among different formal options as the movement proceeds” (414). The 51 finale could be termed a variation=>rondo conversion, and the finales to 66 and 69 can be termed as Type 4=>rondo “midstream” conversions; since 64 lacks retransitions into its refrains, it creates an unusual Type 4=>rondeau conversion.

The first time Haydn “stays the course” on a symphonic Type 4 structure21 in any way appears to be in an orphaned symphonic finale that Haydn likely composed in 1781, the Presto for Orchestra, Hob. 1a: 4.22 As shown in a diagram of its structure (see Example 5), a TR=>FS typical of a continuous exposition follows the refrain beginning in m. 33, reaching EEC in m. 61 with a two-part closing zone (mm. 62–82) that leads to the retransition in m. 83. In the third rotation (the recapitulation in a Type 4 sonata), Haydn only revisits one module from the post-Pr

Example 5. Haydn, Presto, Hob. 1a: 4, formal layout.
expositional material: the cadential C\textsuperscript{2} module (mm. 224–232, in I). The rest of the exposition is abandoned when a section of CRI (coda-rhetoric interpolation) follows the refrain (mm. 206–24, with ESC in 224), overwriting nearly all the modules of the original exposition (TR, =>FS, and C\textsuperscript{1}) before “resuming” the recapitulation with the final portion, C\textsuperscript{2}. Though problematic because of the minimal amount of tonal recapitulation of expositional material, this rarely-discussed “symphonic finale” reveals Haydn’s first experimentation with the symphonic Type 4 sonata. In his later Type 4 sonatas, Haydn typically omits varying amounts of expositional material in his recapitulatory rotations, particularly his characteristically P-based S or C modules. This is a practice also seen in his Type 3 sonatas with P-based S and/or C modules; he often thought it redundant simply to transpose P-based material back to the tonic key, particularly in a Type 4 where P\textsuperscript{r} in the tonic is used as the refrain and therefore appears even more than in a Type 3 sonata. This tendency of Haydn’s is crucial to the understanding of his later symphonic finales.

Though Haydn did write two “pure” rondo finales in the next decade (Symphonies 79 and 89; most of his “Paris” symphonic finales are Type 3 sonatas), he seems to develop a growing affinity (or at least curiosity) for the Type 4 symphonic finale: 85 and 88 are Type 4 sonatas with highly shortened “recapitations” (in fact, the term recapitulation might be a stretch in pieces like these and Hob. Ia: 4; Hepokoski and Darcy’s label of “tonal resolution,” usually used in the “partial recapitations” in Type 2 sonatas, might be more appropriate). This affinity blossomed into a “first-level default” for Haydn in his London symphony finales, as nine of the twelve movements could be described as some kind of Type 4 sonata, though each with its own peculiarity and its own proportion of sonata and rondo elements. Of the remaining finales, 98 and 104 are Type 3s, again with their own typically Haydnian ambiguities, and 96 is a relatively uncomplicated rondo with no Type 3 elements.

Though a detailed discussion of these finales lies beyond the scope of this essay, I will touch briefly on how these extraordinary finales interact with Hepokoski and Darcy’s definitions of the rondo and the Type 4 sonata, and the interpretive value of such analysis. Perhaps the most useful way to approach these pieces is to start with the historically grounded Type 4 “prototype,” then examine selected movements’ deviations from the norm (just as Haydn seems to proceed by switching gears or thwarting expectations along the way).

Proportionally speaking, the 99 and 103 finales return the most expositional material in the third rotation, and are as close to “touchstone” examples of Type 4 sonatas as can be found in the London symphony finales, since they have the strongest Type 3 “recapitulatory” presence along with the rondo elements. Less expositional material is reviewed in the third rotation of the 102, 94, and 93 finales. In 102 and 94’s third rotations, Haydn jettisons the entire TR zone, retaining only the last two S modules (in 102) or =>FS material (in 94\textsuperscript{23}).

The 93 finale also eliminates a large amount of expositional material in the recapitulatory rotation, but this finale is in closer dialogue with a Type 1 sonata than a Type 3 (with only two rotations plus a non-rotational coda), with a developmental section interpolated at the beginning of Rotation 2—a Type 4\textsuperscript{1-exp} sonata
(see Example 6). Formal ambiguities abound: the expository rotation could be interpreted as a trimodular block (a P-based TM1 in m. 84 that dissolves into TR-like TM2 in m. 98, followed by a second MC in m. 117, a popular-style TM3 theme that resembles many of Haydn’s closing themes, and EEC driven through in m. 132) or a two-part exposition with a P-based S theme and a popular-style S' theme (m. 118; this interpretation is shown at the bottom of Example 6). However one interprets this exposition, the second rotation (tonal resolution) twice interrupts the rounded-binary P\textsuperscript{ref}: (1) after its a section, when the development begins in m. 186; and (2) after it has resumed in m. 223, when its internal retransition jumps directly to the second MC (I:HC, mm. 236–7), followed by the popular-style TM3 (or S') theme resolved to the tonic in m. 238. The rotation then revisits the remainder of the exposition through the retransition in m. 260. Although the jettisoned expository material somewhat weakens the Type 3 presence in these three rondo finales, the Type 3-like expositions of their initial rotations and an awareness of Haydn’s typical practice of omitting expository material in his Type 3 recapitulations (often P-based TR, S, and/or C zones) allows them to be situated in the Type 4 column of our continuum. However, each has its own formal peculiarity along the way and seems to remain on the “fence” between Type 3 and Type 4.

The strong presence of fugal techniques renders the “generically challenging” (415 n. 57) finale of Symphony no. 95 even more vexing to the formal analyst: cast in two rotations plus a coda, it is perhaps best termed as a Type 4\textsuperscript{1} sonata. Considering the fugal TR from mm. 32b–53 as being tonally resolved in mm. 137–147 (reaching the I: PAC ESC in m. 146 and omitting the =>FS material from the exposition) offers the possibility of this being an abbreviated, highly modified recasting of the expository rotation, and situates this as a Type 4\textsuperscript{1} sonata with a shortened tonal resolution. Fugal procedures also problematize the structure of the 101 finale, which, despite a Type 3-like exposition, lacks any clear “recapitulation” whatsoever, which nudges this finale out of the Type 4 column toward a rondo (similar to the 64, 66, and 69 finales discussed above). Though it has no fugal elements, the finale of Symphony no. 97 begins on a Type 4 course, but veers away toward a pure rondo even more so than in 101 by abandoning all expository materials in its third rotation. Fisher and Cole, who generally emphasize tonal resolution as the criterion for sonata-rondo candidacy, term this an “ABACA” rondo (though Fisher acknowledges its sonata-like exposition and development), whereas from the rotational/Type 4 “veer-away” perspective of Sonata Theory, it is perhaps better viewed as a finale that begins with all intentions of being a Type 4 but eventually abandons its Type 3 trappings in the third rotation: a Type 4=>rondo conversion, akin to the 64 and 66 finales.

The opposite kind of formal detour takes place in the finale of Symphony no. 100 (see Example 7). Following a continuous exposition (with a large P-based TR=>FS zone, mm. 49–85; an EEC candidate occurs in m. 86, but the more emphatic V:PAC in m. 109 renders m. 86ff. as more of a C\textsuperscript{pre-EEC}), P\textsuperscript{ref} tentatively begins in the minor dominant key, a practice more typical of a pure Type 3 sonata to launch the development. This temporarily weakens the rondo component of the Type 4. Haydn revisits most of the expository materials in the third rotation, with
<table>
<thead>
<tr>
<th>Rotation 1 (Expo)</th>
<th>Rotation 2 (enlarged)</th>
<th>Rotation 3 (Coda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>a</td>
<td>Pᵢ</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>25 - 34</td>
</tr>
<tr>
<td>172 (small)</td>
<td>186</td>
<td>223-232</td>
</tr>
<tr>
<td>Pᵢ</td>
<td>Devel</td>
<td>Pᵢ resumes</td>
</tr>
<tr>
<td>1</td>
<td>b₁</td>
<td>b₂ - RT (V₄)</td>
</tr>
</tbody>
</table>

**Example 6.** Haydn, Symphony no. 93, fourth movement, formal layout.
**Example 7.** Haydn, Symphony no. 100, fourth movement, formal layout.
the dramatic return of the Janissary instrumentation for the C*pre-EE* in m. 265 (=86), and resuscitates the rondo structure by launching the coda rotation with the a section of P in m. 304, as well as a stretto of the head-motto in m. 312. This formal indecisiveness suggests a rhetoric of “let’s switch to a Type 3 (in m. 125)” and later “on second thought, let’s go back to the rondo component, if it’s not too late! (in m. 304).”

From a historical perspective, then, Haydn appears to have begun experimenting with the Type 4 sonata-rondo in the 1770s, by first mixing sonata-like expositions into rondo finales (in 64, 66, and 69), then by revisiting varying amounts of these expositions in the third rotation (in Ia: 4, 85, and 88). In the London symphonies, he uses the Type 4 prototype as a starting point for all but three of the ten finales, and deviates from a normative Type 4 is a dazzling variety of ways. The analytical model of the Type 4 sonata and the rondeau=rondo=Type 4 continuum offer a new way to approach Haydn’s analytically challenging late symphonic finales. It also allows the analyst to explore the rhetorical discourse of these nettlesome finales as they wander into diverse formal adventures in the following rotations and either fulfill, deny, or partially fulfill the generic expectations of the listener.

The “Reversed Recapitulation” vs. Type 2 Sonata
Previous scholarship often refers to a recapitulation that begins with secondary-theme materials (S) and then revisits the primary theme (P) as a “reversed recapitulation.” Timothy Jackson, in particular, traced the reversed recapitulation in several nineteenth-century pieces by Brahms and Schubert, linking them to similar forms in late eighteenth-century pieces, and arguing for the “tragic” rhetorical expressions of displacing the primary theme until the end of the recapitulation.24 Hepokoski and Darcy’s contention, however, is that the Type 2 sonata, in which the second rotation opens with a development or episode, then “rejoins” expositional material within the TR or S zone (establishing the crux), does not have a recapitulation in the truest sense of the word—it is better thought of as a “tonal resolution” of expositional materials in the tonic (353). Moreover, any reiteration of P thematic material after this tonal resolution is not a reversal of expositional materials, because it falls outside of sonata-space, which was completed when S and any C zones have run their course; if they have not run their course, the P recurrence is likely part of a coda-rhetorical interpolation (CRI), and if they have, it is the beginning of a rotational coda. Therefore, many pieces previously analyzed as having “reversed recapitulations” are reassessed by Hepokoski and Darcy as being Type 2 sonatas (or, in some cases, expanded Type 1 sonatas) with P-based CRI or codas in or after the second rotation. Jackson’s remarks that the fundamental structure is distorted by the displacement of the tonic Stufe (which also negates the usual interruption of the Ursatz at the opening of the recapitulation) are indeed well taken, yet the rhetorical idea of the “cruel hand of Destiny” tragically upsets the sonata design and harmonic structure, while thought-provoking, seems tenuous, particularly when these pieces are reconsidered from the perspective of Sonata Theory and the Type 2 sonata.25 Alternatively, if the second rotation begins with a tonic recurrence of P, then a lengthy developmental or episodic “interpolation” before rejoining TR
and moving to S and C, creating an expanded Type 1 sonata, then a tonic recurrence of P after this second rotation could also be (mis)interpreted as a reversed recapitulation. This is precisely the case in a complex piece that Jackson analyzes in his article, Brahms's *Tragic Overture*, op. 81 (1880).

Although the *Tragic Overture* calls for a detailed, nuanced formal discussion (which is beyond the scope of the present review), the piece offers proof of how Sonata Theory offers a clear advantage over previous formal readings, such as the reversed recapitulation. A rotational reading of the piece (as opposed to a reversed recapitulation reading), shown in Example 8, depends on interpreting the P material at m. 185 as launching the second rotation—Jackson reads this passage as a “bridge to the development ... based on introduction.” Yet, although many normative Type 3 developments begin with, or are preceded by, a P-based “transition” or bridge, rarely is this P material emphatically in the tonic, as it is in the *Tragic Overture*. The rotational idea is subtly invoked by references to three of the P modules: P⁰, the ff “1-2 punch” from m. 1, which appears intact in m. 185, then echoed piano in m. 187; P¹ (m. 189), beginning exactly as it had in m. 3, but then dissolving into developmental passagework; and the dotted figure from m. 7ff., worked out in a larger developmental section (mm. 212–264). Brahms thus proceeds through the three P modules in order, lingering wistfully on the first two before settling in comfortably on the third—this implies a P-based opening to the second rotation, the hallmark of a Type 1 sonata. Specifically, the P-based developmental interpolation that leads to a rejoicing of expositional material (the de-energizing TR¹ in m. 264, matching m. 84 in the exposition, though re-textured) is typical of Hepokoski and Darcy’s “expanded Type 1 Sonata” (349–350; they cite the *Tragic Overture* as an example). The music gets “back on track” in m. 264, with the crux occurring at the I:HC MC (mm. 294–299).

Jackson’s recapitulation begins at this point, with the S theme in tonic major (m. 300); the remainder of his recapitulation moves through the second group and arrives at the return of the first group (P) in m. 367. However, the material that precedes this return (interpreted here as S⁰ material, following an attenuated ESC I:IAc effect in m. 353) is interrupted by the tonic return of P material in m. 367; module 1 of S⁰ appears in m. 353 (= m. 160), module 2 is jettisoned (overwritten by P?), and module 3, the triplet woodwind flurries mixed with the dotted figures from P, is recaptured in m. 423 (= m. 177). This interpretation thus reads mm. 367–422 as a massive CRI. As Jackson observes, it does indeed revisit many modules from the expositional P sequence (including the “codetta” from m. 59ff., revisited in m. 403ff.), but is considered to be outside of sonata space, and thus not part of the recapitulation, let alone a reversed recapitulation. Rather, it is an interpolation in the second rotation of the expanded Type 1 sonata. Any tragic hermeneutic interpretations of the piece would arise not from the “displacement” of P in a reversed recapitulation (it is, in fact, not displaced at all, but begins the second rotation) but from the failed exposition and recapitulation: neither the exposition nor the recapitulation achieves a satisfactory PAC in their respective keys (the mediant and the tonic). “Tragic” attempts are made at achieving ESC in the CRI section with the repeated thirdless V→I progressions (mm. 401, 402, and 403–407), but these also ultimately fail. So, too, in my opinion—and that of
**Example 8.** Brahms, *Tragic Overture*, formal layout.
Hepokoski and Darcy—does the “fallacy” of the reversed recapitulation; these constructions, when found, are better interpreted as Type 2 sonatas with P-based codas or CRIs, or expanded Type 1 sonatas with large developmental/episodic interpolations in the second rotation, and P-based codas or CRIs.  

_Brahms, the TMB, and the Three-Key Exposition_
The final issue I wish to discuss is the “three-key exposition” that was used in several nineteenth-century sonatas, especially those by Schubert and Brahms. James Webster specifically cites Brahms’s use of this technique (especially in his “first mature” period) as evidence of the influence Schubert’s music exerted on the young Brahms. Indeed, many of Schubert’s works touch on three keys in the exposition, for example the early String Quartet, D. 112 and the late B-flat Quartet, D. 810 and _Quartettsatz_, D. 703. Schubert’s own inspiration for this technique was likely Beethoven’s _Coriolan_ Overture (i–III/iii–v), though other examples exist in the Classical repertory. As Hepokoski and Darcy mention, the trimodular block was likely the Classical precedent for the three-key exposition that became so common in the nineteenth century (Preface, vii). Although it was not always used in conjunction with the three-key exposition, it was sometimes used to launch the second and third keys thereof (177): the first MC sets up the often-flawed TM1 module in the second key; TM2 leads to the second MC, which then sets up the TM3 zone in the third key. If the third key is the normative dominant (or relative major if the piece is in minor), the second key often seems to be discarded as the “wrong” key in the TM2 section before we get to the “correct” key that the listener expects. A “perhaps-influential” three-key exposition that employs the TMB is that of the overture to Cherubini’s popular opera _Les deux journées_ (1800); this is also a rare example of TM1 and TM3 being the same theme, though in different keys (TM1 in i–III, TM3 in the normative key of V). A similar technique can also be found in the opening movement of Brahms’s Symphony no. 2 (graphed in Example 9, which shows the exposition and recapitulation rotations). Following a P-based, energetic TR (mm. 59–65), an example of the “de-energizing transition” mentioned above occurs in mm. 66–81: a sudden drop to piano in m. 66 with the “6/8” exchanges between the oboes and violins, and the hemiola prolongation of V/iii (mm. 78–81) which sets up the “lullaby” TM1 theme in m. 82 that begins in iii. The use of iii:PAC for the “blocked medial caesura” effect in m. 81 is highly deformational by eighteenth-century standards, but as the authors point out, it is linked to similar blocked MCs in eighteenth-century pieces, from which the de-energizing transition itself evolved. After reiterating the TM1 theme (which, despite its S-like character, is harmonically unstable, vacillating between iii, I, and V—certainly reminiscent of the “flawed” TM1 from earlier sonatas), Brahms provides a highly energetic TM2 zone beginning in m. 118: the first module (mm. 118–134) solidifies the key area of V for the first time, and the even more energetic second module (mm. 135–155) culminates in a ff V/V in mm. 154–5. A weak MC effect is thus produced, but in the normative key (first-level V:HC MC, mm. 154–5; this could also be interpreted as a highly deformational V:1AC MC effect, if we include the I in m. 155), and the TM1 “lullaby” theme returns as TM3 in the expected key of A major (m.
<table>
<thead>
<tr>
<th>Rotation 1 (Expo)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td>59</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de-energ</td>
<td></td>
</tr>
<tr>
<td>MC1</td>
<td></td>
<td></td>
<td></td>
<td>78-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V:HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>118</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>TM1 (iii)</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM2</td>
<td></td>
</tr>
<tr>
<td>TM3 (TM1 in V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEC</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>codetta</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation 3 (Recap)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>de-energ</td>
<td></td>
</tr>
<tr>
<td>MC1</td>
<td></td>
<td></td>
<td></td>
<td>349 (=81?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V:HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350 (=82)</td>
<td>386 (=118)</td>
<td>403 (=135)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM1 (vi)</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM2</td>
<td></td>
</tr>
<tr>
<td>TM3 (TM1 in I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>422-423</td>
<td>424 (=156)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEC avoid (DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC (horn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>477 (=179)</td>
<td></td>
</tr>
</tbody>
</table>

Example 9. Brahms, Symphony no. 2, first movement, exposition and recapitulation, formal layout.
155ff.). Like the Cherubini example above, the same theme is used as both TM1 and TM3, first in the “flawed” key, then in the “correct” key. Brahms also seems to compensate for the de-energizing TR\textsuperscript{12} module before the first MC with the large TR-like block in TM2.\textsuperscript{33} Interestingly, Brahms omits the de-energizing TR\textsuperscript{12} in the recapitulation, instead moving to a rather abrupt vi:HC MC1 in m. 349 (set up majestically by the brass sextet). This transposition of the exposition’s iii:HC MC1 downward by fifth is a technique also seen often in Beethoven with off-dominant expositional material (for example, in the Egmont Overture and the first movement of the Piano Sonata in G, op. 31, no. 1). All of the TMB materials return intact (with unaltered correspondence measures: 349–446 = 81–178) and the tonal resolution “proper” occurs with TM2 and TM3 in the tonic key. ESC, however, is delayed with a large CRI initiated by the denied PAC in m. 447, and continued by the extended horn solo (mm. 455–477) that tantalizingly vacillates between 3 and 2 at its opening, finally reaching 1 in m. 477 and providing the long-awaited ESC.

Other pieces by Brahms, particularly his late Sonata for Clarinet and Piano, op. 120, no. 1, use a similar three-key exposition/TMB construction (with a de-energizing transition and a compensatory TM2 module, but with different TM1 and TM3 themes).\textsuperscript{34} The historical issues that Hepokoski and Darcy raise—the development of the Classical blocked medial caesura into the Romantic de-energizing transition, as well as the trimodular block/three-key exposition paradigm—can be used to examine specific aspects of Brahms’s oft-discussed “conservative” side.

Since the sonata prototype continued to be used, expanded, and recast in nineteenth-century works such as this, as well as those by Beethoven, Schumann, Mendelssohn, Mahler, et al., Sonata Theory provides an ideal starting point to examine how these pieces simultaneously adhered to, and deviated from, the structural norms of the eighteenth-century sonata. The analyses of the selected Haydn rondo finales and the Brahms pieces above provide just a glimpse of the new light that Hepokoski and Darcy’s Sonata Theory can shed on even the most complex, experimental, or “flawed” sonatas. The “correct” analytical solution is not necessarily the end goal; rather, the goal is a greater understanding of the course the composer initiated at the piece’s outset, and how closely this course was adhered to as the piece progressed. Deviations from the norm, whether slight “tweaks,” “deformations,” or drastic reinventions of the generic expectations, can be understood from the perspective of all the first-level defaults with which the composer was in dialogue, and that the listener expected. As the authors themselves say, Sonata Theory itself was developed by “let[ting] the composers themselves teach us how sonatas work” (Preface, v) and is a “blend of musicological and music-theoretical thinking ... a set of reflections on what sonata form is and how it can be understood to mean anything at all” (vii). Elements of Sonata Theory lays out this influential analytical method in its entirety, and is sure to spark fresh discussions and analyses of the diverse, challenging repertory of the eighteenth- and nineteenth-century sonata.
I would like to thank David Castro for his helpful comments and discussion concerning this review.


4. For example, Haydn’s use of TR=⇒FS and continuous expositions, his experimentation with the rondo-Type 4 sonatas, or Beethoven’s impetuous and forceful overriding of various defaults.


7. See, for example, 69 n. 10, 84 n. 14, and 85 n. 15.

8. This decimal superscript designation is one of several computer-related nomenclatures and analogies throughout the book; it is comparable to the version numbers of computer software, which increment by decimal points when updates or “fixes” are implemented, but the integer increases when a MAJOR change or update is done (a “PAC”!). Their labeling of Sonata Type 5 modules borrows, by their own admission, filepath designations from the MS-DOS operating system: R1\P1, S1\DE, etc. (452 n. 69). A delightfully eccentric analogy to the computer world is also made when imagining a novice eighteenth-century composer using a computer “wizard
help feature” to create the structure of a sonata, selecting from various “ranked” options presented in successive “dialogue boxes” (first-level default, second-level default, etc.) for each component (10). They, of course, caution against the literalness of this image, as well as of the computer-like “defaults” associated with MCs, key schemes, etc.

9. In discussing the relationship between the EEC and the Schenkerian 5-zug/linear progression in the key of V (or III), the authors originally postulated (in 1997) that the “term EEC is generally equivalent—while acknowledging occasional exceptions—to the point of completion of the first linear fifth-progression (Zug) … in the key of the dominant.” (Hepokoski and Darcy, “The Medial Caesura,” 119–120) However, in the present book they state that this claim is “reasonable” (147) but acknowledge that “to claim that the EEC invariably (or even usually) is identical to the ZPAC [the PAC closing the 5-zug] … immediately raises complex and controversial issues.” (148; my emphasis) In keeping with their flexible approach to analysis throughout the book, they have essentially problematized their original claim that the two events are generally (or “usually”) simultaneous—and even suggest that “it may not need to be decided at all” (149).

10. See, for example, James Webster, “Schubert’s Sonata Form and Brahms’s First Maturity,” 19th-Century Music 2, no. 1 (1978): 18–35; and “Schubert’s Sonata Form and Brahms’s First Maturity (II),” 19th-Century Music 3, no. 1 (1979): 52–71.

11. A rotational coda provides an extra, partial rotation at the end if it begins with P, or variants of P material.


13. The term “crux” is loosely borrowed from Ralph Kirkpatrick’s Scarlatti analyses. See 240 n. 11.

14. This is also where the coda (if any) begins. Any coda-type material appearing before the correspondence measures have been completed is considered “coda-rhetoric interpolation” if the correspondence measures then resume afterward.

15. Malcolm Cole makes this claim, although he qualifies it somewhat in his later articles, e.g., saying “Mozart appears to have written the first sonata-rondo” in “Haydn’s Symphonic Rondo Finales: Their Structural and Stylistic Evolution,” Haydn Yearbook 13 (1983): 122 (my emphasis). He ascribes this claim originally to Tobel in 1935 (Rudolf von Tobel, Die Formenwelt der klassischen Instrumentalmusik (Bern and Leipzig: Paul Haupt, 1935), 183).


17. While numerous readings made by the authors throughout the book are open to dif-
fering interpretations without their specific acknowledgment thereof; this one stands out because they are specifically citing rare instances of a particular Type 4 subtype.

18. Please note that in this discussion I am isolating Haydn’s symphonic finales; similar analysis could be done in more extended studies that considered all of Haydn’s finales from 1766 onward, or the symphonic finales of Haydn, Mozart, and Beethoven, etc. In Example 4, pure theme and variation finales and Type 3 sonatas before 1785 are not shown.


20. See Cole, “Haydn’s Symphonic Rondo Finales,” 116; Fisher, “Further Thoughts,” 92. Cole suggests it was written in 1775 or later, while Fisher leans more toward 1773.

21. The fourth movement of Haydn’s String Quartet op. 20, no. 1 and the third movement of op. 20, no. 5, both written in 1772, are earlier examples of non-symphonic Type 4s, though neither lacks exceptional features—both have severely shortened recurrences of P'' at the beginning of Rotation 2, and the op. 20, no. 1 movement has repeat signs around the first rotation, a strong Type 3 element. The brevity of the P'' Rotation 2 occurrences weakens their identities as “pure” Type 4s.

22. The general consensus is that this was originally intended to be the finale to Symphony no. 73 (written in 1781), and Haydn substituted the overture to *La fedeltà premiata* (which premiered in February of 1781) as the finale. See Fisher, “Further Thoughts,” 94. Coincidentally (or not), Mozart wrote his first, and arguably only, Type 4 symphonic finale the year after (1782), the finale to Symphony no. 35, K. 385 (“Haffner”); the finale to his earlier Symphony no. 23, K. 181, previously cited along with the K. 157 finale as the “first sonata-rondo written,” is better thought of as a symmetrical three-couplet rondeau, like the K. 157 finale.

23. The =>FS material is a **forte** P-based sentential theme could also be seen as a Haydnesque P-based S theme with the V:HC MC preceding it, as in the 99 and 103 finales.


25. If anything, a “tragic” deformation to a sonata recapitulation is more compellingly argued, in my opinion, by Hepokoski in “Back and Forth from *Egmont*.” The failure of a recapitulation’s S zone to achieve structural closure at the moment of ESC results in the (tragic?) failed, deformational recapitulation; if the ESC (I:PAC) is recaptured outside of sonata space, in the coda, a “utopian” rhetoric can be invoked, as in the *Egmont* Overture. The varying strengths of nonresolving recapitations
(which Hepokoski categorizes at the end of the article) and any deferred ESC can lead to rich hermeneutical interpretations. Pieces with "tragically" nonresolving recapitulations that lack ESC seem more flawed than Type 2 sonatas that displace or resituate the P theme into a coda or CRI block.


27. This could also be interpreted as an ESC effect if the cadence is considered strong enough, and the material that follows it as more normative C material.

28. Most of Jackson's examples of the "tragic reversed recapitulation" can be described as Type 2 sonatas with P-based codas; the exceptions are the finale of Brahms's Violin Sonata, op. 108, an expanded Type 1 similar to the Tragic Overture (though with a three-key exposition), and the highly problematic finale of the Cello Sonata, op. 38, which seems closer to a deformational Type 3 sonata (the majority of P and TR return, but S only reappears before the recapitulation—in the dominant—and nowhere else; a P-based coda overwrites the S and C modules).

29. Webster, "Schubert's Sonata Form."

30. The Quartettsatz is another of the pieces Timothy Jackson cites as having a tragically reversed recapitulation; it is better understood as a Type 2 sonata with a three-key exposition employing a trimodular block.


32. As Hepokoski and Darcy note (171 n. 5), Haydn's Piano Sonata Hob. XVI: 50 also employed the same theme for TM1 and TM3, but in the same key (V). Both TM1 and TM3 are P-based themes—almost a first-level default for Haydn's choice of secondary expositional themes.

33. Other interpretations of the exposition are, of course, possible: for example, the first occurrence of the lullaby could be interpreted as a wrong-key "preview" of the S theme, an interpolation within the TR zone, which resumes in m. 118 and reaches the "true" S theme in the correct key in m. 156. Difficulties in determining the exact solution to movements of nineteenth-century sonatas are likely, yet, as the authors advocate, more significant are the rhetorical ramifications of such ambiguities. In this case, these include the compensatory nature of the "second TR zone" (mm. 118–154), and the historical connections of the de-energizing transition/blocked MC.

34. If parallel modes can be considered two separate "keys," several other three-key expositions can be found in his works, where the second and third keys are parallel keys with the same tonal center (e.g., the exposition of the first movement of Symphony no. 3: I–III–iii).
CONTRIBUTORS

MARK ANSON-CARTWRIGHT is Assistant Professor of Music Theory at Queens College and The Graduate Center of the City University of New York.

NORMAN CAREY is Associate Professor of Music Theory at the CUNY Graduate Center and director of the DMA program in musical performance. He is the pianist of the Prometheus Piano Quartet.

CHARLOTTE M. CROSS holds a Ph.D. in Historical Musicology from Columbia University. Currently she is a research scholar based in New York, New York. Her work focuses on interrelationships between Schoenberg's musical philosophy, aesthetics, and theories.

GRETCHE N C. FOLEY is Associate Professor of Music Theory at the University of Nebraska-Lincoln. She received the Ph.D. in Systematic Musicology from The University of Western Ontario in 1999.

DAVID GAGNÉ is Associate Professor at Queens College and The Graduate Center of the City University of New York. A past president of the Music Theory Society of New York State, he is the co-author of Analysis of Tonal Music: A Schenkerian Approach (Second Edition, 2007) and the co-editor of Structure and Meaning of Tonal Music: Festschrift in Honor of Carl Schachter (2006).

GRAHAM HUNT is Associate Professor of Musicology and Music Theory at the University of Texas at Arlington. He received his Ph.D. from Duke University.

JEFFREY KRESKY is Professor of Music at William Paterson University, where he chairs the music theory area and directs the Program in Music Honors.

FRANK SAMAROTTO is Associate Professor of Music Theory at Indiana University, Bloomington.

JOHN TURCI-ESCOBAR is Assistant Professor of Music Theory at Washington University in St. Louis.