Local Bond Stress-Slip Models for Reinforcing Bars & Prestressing Strands in High-Performance Fiber Reinforced Cement Composites (HPFRCCs)

Shih-Ho Chao
University of Texas, Arlington

Antoine E. Naaman
University of Michigan, Ann Arbor

Gustavo J. Parra-Montesinos
University of Michigan, Ann Arbor
Direct Tensile Test

Regular Concrete

FRC

HPFRCC

1 cm
Local Bond-Slip Test Setup and Loading Type

- **Monotonic Loading**
 - \(P \) (Load)
 - \(D \) (Displacement)

- **Unidirectional Cyclic**
 - \(P \) or \(D \)
 - Number of Cycle

- **Fully Reversed Cyclic**
 - \(P \) or \(D \)
 - Number of Cycle

- HPFRCC Prism
- Corner Plate
- Reinforcing Bar
Local Bond-Slip Test Setup and Loading Type

- Monotonic and Unidirectional Cyclic Loading
- Fully Reversed Cyclic Loading
Fibers

- Spectra (ultra high modulus polyethylene, UHMPE) Fiber
- Steel Hooked Fiber
- PVA 13 (polyvinyl alcohol) Fiber
- Twisted polygonal steel (Torex) Fiber
Typical Bond Stress-Slip Responses under Monotonic Loading (Reinforcing Bars)

Specimen with No. 25 Reinforcing Bar Matrix Compressive strength = 76 MPa

* With Spectra Fiber (2% Fiber Volume Fraction)

Average Bond Stress (MPa)

- HPFRCC*
- Spiral Reinforcement ($\rho_s = 2\%$)
- Plain Concrete

Slip (mm)
Fully Reversed Force-Controlled Cyclic Loading (Typical Results)

Plain Concrete

RC (2% Spiral)

HPFRCC (2% twisted steel fiber)
Reinforcing Bars - Performance Under Monotonic Loading

Typical Cracking Patterns

Regular Concrete

RC (2% Steel Spiral Reinforcement)

HPFRCC (2% Twisted Steel Fiber)
Typical Bond Stress-Slip Responses under Monotonic Loading (12.7 mm Seven-Wire Strand)

- Specimen with 12.7 mm dia. Strand
- Matrix Compressive strength = 76 MPa
- With Square Twisted Steel Fiber (1% Fiber Volume Fraction)
- HPFRCC*
- Spiral Reinforcement ($\rho_s = 2\%$)
- Plain Concrete

- Graph showing bond stress vs. slip for different materials.
Strands - Performance Under Reversed Cyclic Loading

- Plain Concrete: 9 full cycles
- RC (2% Spiral): 27 full cycles
- HPFRCC (2% Twisted Steel Fiber): 27 full cycles
Typical Bond Stress-Slip Models for Reinforcing Bars embedded in FRCC:

- **Ascending branch**:
 \[\tau(s) = \tau_{\text{max}} \left(\frac{s}{s_{\text{max}}} \right)^{0.5} \]

- **Descending branch**:
 \[\tau(s) = \tau_f \left(\frac{s}{s_f} \right) \left(\frac{s_{\text{max}} - \tau_f}{s_{\text{max}} - s_f} \right) \]

\[\tau_{\text{max}} = \left(1.18 + 3.73 \frac{c}{d_b} + 22.38 \frac{d_b}{L_e} \right) \left(\sigma_r \right)^{0.8} \text{ (MPa)} \]

- \(\tau_f \approx 0.45 \tau_{\text{max}} \)
- \(s_{\text{max}} = 1.3 \text{ mm} \)
- \(S_f = 10.2 \text{ mm} \)

Note: \(L_e \) = embedment length; \(c \) = concrete cover; \(d_b \) = bar diameter; \(\sigma_r \) = flexural strength of SIFCON matrix

Reinforcing Bars in SIFCON (Hamza, 1992)
Typical Bond Stress-Slip Models (continued):

Reinforcing Bars in SFRC (Harajli, 2002)

Ascending branch: $\tau(s) = \tau_{\text{max}} \left(\frac{s}{s_1}\right)^{0.3}$ if $0 \leq s \leq s_1$

τ_{max} (MPa) = $2.57\sqrt{f_c'}$ (MPa)

$\tau_{\text{splitting}} = c_f \left(0.75\sqrt{f_c'} \left(c / d_b\right)^{2/3}\right) \leq \tau_{\text{max}}$

where $V_fL / d_f \leq 0.25 \Rightarrow c_f = 1.0$

$V_fL / d_f > 0.25 \Rightarrow c_f = 1 + 0.34\sqrt{V_fL / d_f} - 0.25$

$\tau_{ps} = \left[0.33 + 0.37 \left(c / d_b\right) \left(V_fL / d_f\right)\right]\sqrt{f_c'} \leq \tau_{\text{splitting}}$

$\tau_f = 0.35\tau_{\text{max}}$

$S_{\text{splitting}} = S_1 e^{1.8\left(\frac{\tau_{\text{splitting}}}{\tau_{\text{max}}} - 1\right)}$

$S_1 = 1.5 \text{ mm}$ $S_2 = 3.5 \text{ mm}$ $S_3 = 10 \text{ mm}$
Local Bond Stress-Slip Modeling based on Tensile Stress-Strain Responses of (Proposed)

Direct Tensile Test

Minimum information on tensile strain-hardening stress-strain response of FRCCs needed for design and modeling (Naaman and Reinhardt, 2006)
Separation-Type Failure Mode

Half-Specimen

Bridging Stress

\[\sigma_{pc} \]

Crack surface

\[\sigma_{cc} \]

Reinforcing Bar

\[f_r \]

\[d_b \]

\[L \]

Strut

Pull End

\[F \]

\[F_t \]

\[50.0^\circ \]
Proposed Local Bond Stress-Slip Model for Reinforcing Bar embedded in HPFRCC

Ascending branch
\[\tau(s) = \tau_{\text{max}} \cdot \left(\frac{s}{s_{\text{max}}} \right) \]

0.2\% \leq \varepsilon_{pc} \leq 0.6\%

\[\tau_{\text{max}} = 0.5 \cdot \left(\frac{c}{\eta \cdot d_b} \right) \cdot \left(\sigma_{cc} + \sigma_{pc} \right) - \frac{\sigma_{cc} \cdot \sigma_{pc}}{E_c \cdot \varepsilon_{pc}} \quad \text{(Mpa)} \]

\[\tau_f = 0.15 \tau_{\text{max}} \quad \text{(Mpa)} \]

Diagrams
- **Bond Stress vs. Slip**
 - **\(\tau_{\text{max}} \)**
 - **\(\tau_f \)**
 - **\(S_{\text{max}} \)**
 - **\(S_f \)**

- **Tensile Stress vs. Strain**
 - **\(\sigma_{cc} \)**
 - **\(\sigma_{pc} \)**
 - **\(E_c \)**
 - **\(\varepsilon_{cc} \)**
 - **\(\varepsilon_{pc} \)**
Interface-Crushing-Type Failure Mode

\[\sigma_c \]

Clamping stress

Crack surfaces
Proposed Local Bond Stress-Slip Model for Reinforcing Bar embedded in HPFRCC

\[\tau_{\text{max}} = 40 \cdot \left(\frac{\sigma_{pc} \cdot (f'_c)^{1/4}}{\eta \cdot d_b} \right) \text{(Mpa)} \]

\[\tau_f = 0.3 \tau_{\text{max}} \text{(Mpa)} \]

\[S_{\text{max}} = \frac{215 \cdot \tau_{\text{max}}}{d_b \cdot f'_c} \text{(mm)} \]

\[S_f = 12.7 \text{ mm} \]
Proposed Local Bond Stress-Slip Model for Seven-Wire Strand embedded in HPFRCC

Ascending branch: \(\tau(s) = \frac{\tau_{\text{max}} \cdot S}{s_{\text{max}}} \)

- \(\varepsilon_{pc} \geq 0.6\% \) (in order to maintain the tensile capacity after cracking occurs)

- \(\tau_{\text{max}} = 0.275 \cdot \left[\frac{\sigma_{cc} \cdot f_c'}{d_b} \right] \) (MPa)
- \(s_{\text{max}} = \tau_{\text{max}} / 4 \)
- \(s_f = 20 \text{ mm} \)
Local bond stress-slip models are proposed for reinforcing bars and prestressing strands embedded in HPFRCC. The proposed models were derived based on tensile stress-strain characteristics of HPFRCC (composite elastic modulus, first percolation cracking stress and its corresponding strain, and peak post-cracking stress and its corresponding strain), where a tensile strain-hardening response occurs up to large strains.

Further verification of the proposed models by using other types (such as beam-type) of specimens is suggested.
A STATISTICAL THEORY OF STRENGTH
FOR FIBER REINFORCED CONCRETE

by

ANTOINE E. NAAMAN
Ingénieur Diplômé de l'Ecole Centrale
des Arts et Manufactures
(Paris 1964)
Ancien Élève du Centre des Hautes Études
de la Construction
(Paris 1965)
S.M., Massachusetts Institute of Technology
(1970)

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology

September 1972
BIOGRAPHY - Antoine E. Naaman

Personal: Born July 19, 1940 in Beirut Lebanon
Parents Clotilde and Elie Naaman
Married to Ingrid Schneider of Berlin, Germany
One son, Patrice.

Specialist in Reinforced and Prestressed Concrete, Centre des Hautes Etudes de la Construction, Paris, France, June 1965.
M.S., Massachusetts Institute of Technology, September 1970.
Ph.D., Massachusetts Institute of Technology, August 1972.

During his graduate studies at M.I.T. the author was research assistant, Division of Sponsored Research, from 1969 to 1970 and a full-time teaching assistant.
BIOGRAPHY - continued

Canada. He is currently a member of the Sigma Xi Society, the American Concrete Institute, the Prestressed Concrete Institute and the American Society of Civil Engineers.

Publications:

(with S. P. Shah) "Tensile Tests of Ferro-Cement," Journal of the American Concrete Institute, September 1971.

