Transport of Molecules, Particles, and Cells in Solid Tumors

Rakesh K. Jain
Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; e-mail: jain@steele.mgh.harvard.edu

Key Words drug delivery, gene expression and function, intravital microscopy, molecular imaging

Abstract Extraordinary advances in molecular biology and biotechnology have led to the development of a vast number of therapeutic anti-cancer agents. To reach cancer cells in a tumor, a blood-borne therapeutic molecule, particle, or cell must make its way into the blood vessels of the tumor and across the vessel wall into the interstitium, which it then must migrate through. Unfortunately, tumors often develop in ways that hinder these steps. The goal of research in this area is to analyze each of these steps experimentally and theoretically and integrate the resulting information into a unified theoretical framework. This paradigm of analysis and synthesis has fostered a better understanding of physiological barriers in solid tumors and aided in the development of novel strategies to exploit and/or overcome these barriers for improved cancer detection and treatment.

CONTENTS
Introduction ... 241
Experimental and Theoretical Approaches 243
Distribution Through Vascular Space 243
Metabolic Microenvironment .. 244
Transport Across the Microvascular Wall 247
Transport Through Interstitial Space and Lymphatics 248
Transport of Cells .. 250
Pharmacokinetic Modeling: Scale Up from Mouse to Human . 252
Bench to Bedside ... 253

INTRODUCTION

Within 5 years, cancer may surpass cardiovascular diseases as the number one cause of death in the United States (96). Our nation’s investment in cancer research has led to unprecedented insight into the molecular origins of cancer.
These advances have helped to identify novel targets and develop a vast array of therapeutic agents. For these agents to be successful, they must satisfy two requirements: (a) the relevant agent must be effective in the in vivo microenvironment of tumors, and (b) this agent must reach the target cells in vivo in optimal quantities. The goal of research in this area is to examine the latter issue—the delivery of diagnostic and therapeutic agents to solid tumors and normal host tissues.

All conventional and novel therapeutic agents can be divided into three categories—molecules, particles, and cells. For example, in chemotherapy, the agent can be injected as a molecule or incorporated in a nano-particle or liposome. In gene therapy, it can be a molecule, a viral or nonviral particle, or a genetically engineered cell. In immunotherapy, it can be a molecule, such as an antibody, or a cell, such as activated lymphocytes.

A blood-borne molecule or particle that enters the tumor vasculature reaches cancer cells via distribution through the vascular compartment, transport across the microvascular wall, and transport through the interstitial compartment. For a molecule of given size, charge, and configuration, each transport process may involve diffusion and convection. In addition, during the journey the molecule may bind nonspecifically to proteins or other tissue components, bind specifically to the target(s), or be metabolized (69). Although lymphokine-activated killer cells (lymphocytes activated by the lymphokine interleukin-2) or tumor-infiltrating lymphocytes are capable of deformation, adhesion, and migration, they encounter the same barriers that restrict their movement in tumors. Some of these physiological parameters are also important for heat transfer in normal and tumor tissues during hyperthermic treatment of cancer (70).

The overall aim of research in this area is to develop a quantitative understanding of each of the above-mentioned steps involved in the delivery of various agents. More specifically, the goal is to understand (a) how angiogenesis takes place and what determines blood flow heterogeneities in tumors, (b) how blood flow influences the metabolic microenvironment in tumors and how microenvironment affects the biological properties of tumors (e.g. vascular permeability, cell adhesion), (c) how material moves across the microvascular wall, and (d) how material moves through the interstitial compartment and the lymphatics. In addition, (e) the role of cell deformation and adhesion in the delivery of cells has been examined. Finally, (f) knowledge of these processes for molecules, particles, and cells has been integrated into a unified framework for scale-up from mice to men (Figure 1; see color figure). In this article, I describe various experimental and theoretical approaches, recent findings in these six areas, and how some of these concepts have been taken from bench to bedside for potential improvement in cancer detection and treatment.
EXPERIMENTAL AND THEORETICAL APPROACHES

The following five approaches have been used to gain insight into transport phenomena in solid tumors.

1. A tissue-isolated tumor connected by a single artery and a single vein to the circulation of the host (148, 149). This technique, originally developed in 1961 for rats (54), has recently been adapted to mice (101, 102) and humans (107).

2. A modified Sandison rabbit ear chamber (31, 169), a modified Algire mouse dorsal chamber (113, 114), and a cranial window in mice and rats (168). Use of the ear chamber offers the advantage of superior optical quality and using the mice offers the advantage of working with immunodeficient and genetically engineered cells and animals (23, 30, 42, 127, 161). A quantitative angiogenesis assay was recently developed using these transparent windows to study the physiology of vessels induced by individual growth factors (28, 79, 147) (Figure 2; see color figure). In addition, single vessels of tumors have been perfused in these windows (115, 116), several acute preparations, e.g. liver and mesentery, have been utilized (44), and a new model to visualize lymphatic and lymphangiogenesis in the mouse tail has been developed (86, 110).

3. In vitro methods to assess the deformability, adhesion, permeability, and growth stress of normal and neoplastic cells (58, 119, 129, 145, 158), as well as measurements of the expression of adhesion molecules in intact monolayers (77, 128) (Figure 3; see color figure).

4. Various molecular biology techniques (e.g. in situ hybridization and Southern, Northern, and Western blotting), including development of genetically engineered cells and mice (23, 30, 42, 86, 127, 161). Also, green fluorescence protein has been used as an in vivo reporter to monitor promoter activity noninvasively (42).

5. Mathematical models to describe and integrate the data obtained from the above four approaches, to scale up biodistribution data from mice to men, and to design future experiments (6–9, 11, 12, 37, 74, 82, 83, 132, 133, 135, 140, 163).

Each of these approaches has its limitations. In combination, however, they have permitted development of the framework for tumor microcirculation and drug delivery described in this article.

DISTRIBUTION THROUGH VASCULAR SPACE

The chaotic blood supply of tumors is the first barrier encountered by a blood-borne agent. The tumor vasculature consists both of vessels recruited from the preexisting network of the host vasculature and of vessels resulting from the angiogenic response of host vessels to cancer cells (39, 67). Movement of mol-
JAIN

... molecules through the vasculature is governed by the vascular morphology (i.e. the number, length, diameter, and geometric arrangement of various blood vessels) and the blood flow rate (2, 4, 6, 49, 108).

Although the tumor vasculature originates from the host vasculature and the mechanisms of angiogenesis are similar (39, 108, 139), its organization may be completely different, depending on the tumor type, its growth rate, and its location. The fractal dimensions and minimum path lengths of tumor vasculature are different from those of the normal host vessels (2, 3, 48, 49). The architecture and blood flow are different not only among various tumor types but also between a tumor and its metastases (67, 81). For example, unlike in normal tissue, where the velocity of red blood cells is dependent on vessel diameter, there is no such dependence in tumors (44, 114, 168). Furthermore, the velocity of red blood cells may be an order of magnitude lower in some tumors compared with the host vessels (Figure 4). The temporal and spatial heterogeneity in tumor blood flow may, in part, be a result of elevated geometric and viscous resistance in tumor vessels (107, 149, 150, 151) coupling between high vascular permeability and elevated interstitial fluid pressure (4, 135), vascular remodeling by intussusception (139), and solid stress generated by proliferating cancer cells (53, 58).

Based on perfusion rates, four regions can be recognized in a tumor: an avascular, necrotic region; a seminecrotic region; a stabilized microcirculation region; and an advancing front (34) (Figure 5). Intratumor blood flow distributions in spontaneous animal and human tumors are now being investigated with nuclear magnetic resonance, positron emission tomography, and functional computed tomography (35, 37, 56, 153). Although limited, these results are in concert with the transplanted tumor studies: Blood flow rates in necrotic and seminecrotic regions of tumors are low, whereas those in nonnecrotic regions are variable and can be substantially higher than in surrounding (contralateral) host normal tissues (159). Considering these spatial and temporal heterogeneities in blood supply coupled with variations in the vascular morphology at both microscopic and macroscopic levels, it is not surprising that the spatial distribution of therapeutic agents in tumors is heterogeneous and that the average uptake decreases, in general, with an increase in tumor weight. This perfusion heterogeneity also makes it difficult to heat the tumor periphery during hyperthermia (70).

METABOLIC MICROENVIRONMENT

The temporal and spatial heterogeneities in blood flow lead to a compromised metabolic microenvironment in tumors. To quantify the spatial gradients of key metabolites, two optical techniques were recently adapted: fluorescence ratio-imaging microscopy and phosphorescence quenching microscopy (27, 60, 117, 118, 157). Both pH and pO2 decrease with distance from tumor vessels, leading to acidic and hypoxic regions in tumors (Figure 6). Coupled with the use of cells selected for impaired glycolytic and oxidative pathways, these methods have pro-
FIGURE 4 Blood velocity as a function of vessel diameter in (top) normal pial vessels and (bottom) a murine mammary carcinoma (MCaIV) and a human glioma (U87) xenograft on the pial surface. Note that in normal microcirculation, blood velocity is dependent on vessel diameter, whereas in tumors there is no such dependence. Furthermore, the blood velocity in tumor vessels is about an order of magnitude lower than in host vessels. RBC, red blood cells. (Adapted from Reference 168.)

vided novel insight into pH regulation in tumors (59). Although low pO₂ and pH are detrimental to some therapies (e.g. radiation), they might enhance the effect of certain drugs, if the drug could be delivered in adequate quantities to those regions (80, 136, 160).

To gain further insight into tumor metabolism, two powerful approaches have been combined: magnetic resonance spectroscopy and tissue-isolated tumors. The former allows measurement of the energy level in tumors whereas the latter allows control of the supply of individual substrates (e.g. glucose, oxygen) to the tumor.
Physiological barriers that a blood-borne molecule encounters before it reaches a cancer cell in a solid tumor. *(Top left)* Schematic of a heterogeneously perfused tumor showing well-vascularized periphery; a seminecrotic, intermediate zone; and an avascular, necrotic central region. Note that immediately after intravenous injection, the molecules are delivered to perfused regions only. *(Top right)* Low interstitial pressure in the periphery permits adequate extravasation of fluid and macromolecules. *(Bottom)* These macromolecules move toward the center by the slow process of diffusion. In addition, interstitial fluid oozing from tumor carries macromolecules with it by convection into the normal tissue. Note that the interstitial movement may be further retarded by binding. Products of metabolism may be cleared rapidly by blood. *(Adapted from Reference 68.)*

Using this approach, Eskey et al (36) recently showed that solid tumors depend more on glucose than oxygen to maintain their ATP level. Using a sandwich culture system, Helmlinger et al (57) are currently examining the relationship between the gradients of metabolites and gene expression. Two novel findings have resulted from this work on hypoxia. The relationship between hypoxia and
vascular endothelial growth factor (VEGF) promoter activity in vivo is not as expected from in vitro studies. In addition, deletion of hypoxia-inducible factor 1α lowers angiogenesis and oxygenation in tumors. Surprisingly, instead of growing slowly, these tumors grew faster (23).

TRANSPORT ACROSS THE MICROVASCULAR WALL

Once a blood-borne molecule has reached an exchange vessel, its extravasation, J_s (g/s), occurs by diffusion, convection and, to some extent, presumably transcytosis (65). Diffusive flux is proportional to the exchange vessel’s surface area, S (cm2), and the difference between the plasma and interstitial concentrations, $C_p - C_i$ (g/ml). Convection is proportional to the rate of fluid leakage, J_f (ml/s), from the vessel. J_f, in turn, is proportional to S and the difference between the vascular and interstitial hydrostatic pressures, $p_v - p_i$ (mm Hg), minus the osmotic reflection coefficient (σ) times the difference between the vascular and interstitial osmotic pressures $\pi_v - \pi_i$ (mm Hg). The proportionality constant that relates transluminal diffusion flux to concentration gradients, $(C_p - C_i)$, is referred to as the vascular permeability coefficient, P (cm/s), and the constant that relates fluid leakage to pressure gradients is referred to as the hydraulic conductivity, L_p (cm/mm Hg·s). The effectiveness of the transluminal osmotic pressure difference in producing fluid movement across a vessel wall is characterized by σ, which is
close to one for a macromolecule and close to zero for a small molecule. Thus, the transport of a molecule across normal or tumor vessels is governed by three transport parameters (P, L_p, and σ), the surface area for exchange, and the transvascular concentration and pressure gradients.

Vascular permeability and hydraulic conductivity of tumors in general are significantly higher than that for various normal tissues (33, 52, 65, 116, 152, 166–168), and hence, these vessels may lack permselectivity (165). Positively charged molecules have a higher permeability (29). Despite increased overall permeability, not all blood vessels of a tumor are leaky (Figure 7; see color figure). Even the leaky vessels have a finite pore size, which has been measured in a variety of human and rodent tumors (61). The hypothesis is that the large pore size in tumors represents wide interendothelial junctions (61, 143). Not only does the vascular permeability vary from one tumor to the next, but within the same tumor it varies both spatially and temporally, and during tumor growth, regression, and relapse (65, 78). The local microenvironment plays an important role in controlling vascular permeability. For example, a human glioma (HGL21) is fairly leaky when grown subcutaneously in immunodeficient mice, but it exhibits blood-brain barrier properties in the cranial window (Figure 7). Such site-dependent differences have been found with other tumors in other orthotopic sites (44). The working hypothesis is that the host–tumor interactions control the production and secretion of cytokines associated with permeability changes [e.g. vascular permeability factor (VPF)/VEGF and its inhibitors] (42, 84). A better understanding of the molecular mechanisms of permeability regulation in tumors is likely to yield strategies for improved drug delivery (164).

If tumor vessels indeed leak fluid and macromolecules, then what leads to the poor extravasation of these agents in various regions of tumors? Experimental and human tumors exhibit high interstitial fluid pressure (1, 16, 18–20, 22, 25, 55, 66, 106, 131, 144, 175, 176) (Table 1). Furthermore, the uniformly high pressure drops precipitously to normal values in the periphery of the tumor or in the peritumor region (5, 16, 74). This may lower fluid extravasation in the high-pressure regions, especially because oncotic and hydrostatic pressures are also equal between the intravascular and extravascular space (18, 21, 154). Because the transvascular transport of macromolecules in normal tissues occurs primarily by convection (65, 142), convective transport of macromolecules in the center of tumors may be less than in the tumor periphery (5, 74, 116). Additionally, the average vascular surface area per unit of tissue weight decreases with tumor growth; hence, reduced transvascular exchange would be expected in large tumors compared with small tumors (5, 6).

TRANSPORT THROUGH INTERSTITIAL SPACE AND LYMPHATICS

Once a molecule has extravasated, its movement through the interstitial space occurs by diffusion and convection (66). Diffusion is proportional to the concentration gradient in the interstitium, and convection is proportional to the interstitial...
TABLE 1 Interstitial fluid pressure (mm Hg) in normal and neoplastic tissues in patients

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>N</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal skin</td>
<td>5</td>
<td>0.4</td>
<td>−1.0−3.0</td>
</tr>
<tr>
<td>Normal breast</td>
<td>8</td>
<td>0.0</td>
<td>−0.5−3.0</td>
</tr>
<tr>
<td>Head and neck carcinomas</td>
<td>27</td>
<td>19.0</td>
<td>1.5−79.0</td>
</tr>
<tr>
<td>Cervical carcinomas</td>
<td>26</td>
<td>23.0</td>
<td>6.0−94.0</td>
</tr>
<tr>
<td>Lung carcinomas</td>
<td>26</td>
<td>10.0</td>
<td>1.0−27.0</td>
</tr>
<tr>
<td>Metastatic melanomas</td>
<td>14</td>
<td>21.0</td>
<td>0.0−60.0</td>
</tr>
<tr>
<td>Metastatic melanomas</td>
<td>12</td>
<td>14.5</td>
<td>2.0−41.0</td>
</tr>
<tr>
<td>Breast carcinomas</td>
<td>13</td>
<td>29.0</td>
<td>5.0−53.0</td>
</tr>
<tr>
<td>Breast carcinomas</td>
<td>8</td>
<td>15.0</td>
<td>4.0−33.0</td>
</tr>
<tr>
<td>Brain tumors</td>
<td>17</td>
<td>7.0</td>
<td>2.0−15.0</td>
</tr>
<tr>
<td>Brain tumors</td>
<td>11</td>
<td>1.0</td>
<td>−0.5−8.0</td>
</tr>
<tr>
<td>Colorectal liver metastasis</td>
<td>8</td>
<td>21.0</td>
<td>6.0−45.0</td>
</tr>
<tr>
<td>Lymphomas</td>
<td>7</td>
<td>4.5</td>
<td>1.0−12.5</td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td>1</td>
<td>38.0</td>
<td>—</td>
</tr>
</tbody>
</table>

*N, Number.

*Patients were treated with anti-edema therapy.

Fluid velocity, \(u \) (cm/s). The latter, in turn, is proportional to the pressure gradient in the interstitium. Just as the interstitial diffusion coefficient, \(D \) (cm\(^2\)/s), relates the diffusive flux to the concentration gradient, the interstitial hydraulic conductivity, \(K \) (cm\(^2\)/mm Hg \cdot s), relates the interstitial velocity to the pressure gradient (66). Values of these transport coefficients are determined by the structure and composition of the interstitial compartment as well as by the physicochemical properties of the solute molecule (14, 24, 87–89, 137, 141, 155).

Using fluorescence recovery after photobleaching, Berk et al found \(D \) of various molecules in neoplastic tissue to be about one-third that in water (15) and to be similar to that in the host tissue (24). Similarly, the value of \(K \) for a human colon carcinoma xenograft (LS174T) measured using two different methods (17, 175) was found to be higher than that of a hepatoma (155), which in turn was higher than that of the liver. Given these relatively high values of \(D \) and \(K \), why are exogenously injected macromolecules not distributed uniformly in tumors? As discussed next, there are two reasons for this apparent paradox.

The time constant for a molecule with diffusion coefficient \(D \) to diffuse across distance \(L \) is approximately \(L^2/4D \). For diffusion of immunoglobulin G in tumors, this time constant is 1 h for a 100-μm distance, days for a 1-mm distance, and months for a 1-cm distance. Thus, for a 1-mm tumor, diffusional transport would take days, and for a 1-cm tumor, it would take months. If because of cellular proliferation (58) and interstitial matrix rearrangement the central vessels have collapsed completely, there would be no delivery of macromolecules by blood
flow to this necrotic center (53). Binding may further retard the transport in tumors (7, 8, 15, 90–94). The role of binding is clearly illustrated in Figure 8 (see color figure), which compares the rate of fluorescence recovery of a photobleached spot in tumor tissue injected with both nonspecific and specific immunoglobulin G. In addition to the heterogeneity in D in tumors, the most unexpected result of these photobleaching studies was the large extent (30%–40%) of nonspecific binding (15).

As mentioned earlier, interstitial fluid pressure is high in the center of tumors and low in the periphery and surrounding tissue (5, 16, 74). Therefore, one would expect interstitial fluid motion from the periphery of the tumor into the surrounding normal tissue (Figure 5). In various animal and human (xenograft) tumors studied to date, 6%–14% of plasma entering the tumor has been found to leave from the periphery of the tumor (65, 68). This fluid leakage leads to a radially outward interstitial fluid velocity of 0.1–0.2 μm/s at the periphery of a 1-cm tissue-isolated tumor (65). [The radially outward velocity is likely to be an order of magnitude lower in a tumor grown in the subcutaneous tissue or muscle (5).] A macromolecule at the tumor periphery has to overcome this outward convection to diffuse into the tumor. The relative contribution of this mechanism of heterogeneous distribution of antibodies in tumors may be smaller than the contribution of heterogeneous extravasation because of elevated pressure and necrosis (5).

In most normal tissues, extravasated macromolecules are taken up by the lymphatics and brought back to the central circulation. Because of the lack of functional lymphatics within the tumor, the fluid and macromolecules oozing from the tumor surface must be picked by the peritumor host lymphatics (7). To characterize the transport into and within the lymphatic capillaries, Leu et al (110) recently developed a mouse tail model. Uptake and transport in this model have been measured using a macroscopic approach (routine test dilution analysis) and a microscopic approach (fluorescence recovery after photobleaching) (13, 156). Current efforts are directed toward uncovering mechanisms of lymphangiogenesis (86) and understanding changes in lymphatic transport in the presence of a tumor (109), the working hypothesis being that proliferating tumor cells generate enough stress so that even if lymphatics form in tumors, they collapse.

TRANSPORT OF CELLS

Thus far, discussion has been limited to the parameters that govern the transport of molecules and particles (e.g. liposomes) in tumors. When a leukocyte enters a blood vessel, it may continue to move with flowing blood, collide with the vessel wall, adhere transiently or stably, and finally extravasate. These interactions are governed by both local hydrodynamic forces and adhesive forces. The former are determined by the vessel diameter and fluid velocity, and the latter by the expression, strength, and kinetics of bond formation between adhesion molecules and by surface area of contact (125, 130). Deformability of cells affects both types
of forces. Despite their importance in immunotherapy and gene therapy, the determinants of cell transport in tumors have not been examined.

Using intravital microscopy, Fukumura et al. (41) recently showed that rolling of endogenous leukocytes is generally low in tumor vessels, whereas stable adhesion (≥ 30 s) is comparable between normal and tumor vessels. On the other hand, both rolling and stable adhesion are nearly zero in angiogenic vessels induced in collagen gels by basic fibroblast growth factor (bFGF) or VEGF/VPF, two of the most potent angiogenic factors (28). Whether the latter is due to a low flux of leukocytes into angiogenic vessels and/or down-regulation of adhesion molecules in these immature vessels is currently under investigation. The age of the animal also plays an important role in leukocyte-endothelial interactions (162).

To gain further insight into the types of cells that adhere to tumor vessels, the localization of interleukin-2–activated natural killer (A-NK) cells in normal and tumor tissues in mice was examined using positron emission tomography (119, 120). Immediately after systemic injection, these cells were localized primarily in the lungs, and a nondetectable number of cells arrived in the tumor (119). These findings were consistent with previous work on the deformability of these cells using micropipet aspiration technique, in which interleukin-2 activation was shown to make these cells rigid, and their mechanical entrapment in the lung microcirculation was predicted (121, 145). Constitutive expression of certain adhesion molecules in the lung vasculature also facilitates their localization in the lungs (76).

One approach to reduce lung entrapment is to reduce the rigidity of these cells (122). Instead, to circumvent the lung, Melder et al. injected A-NK cells into the blood supply of tumors and found that A-NK cells, both xenogenic and syngeneic, adhered to blood vessels in three different tumor models (120, 126, 146). These results also supported the hypothesis that the endogenous cells that adhere to tumor vessels after systemic interleukin-2 injection are mostly activated lymphocytes (138).

To find out which adhesion molecules are involved in the A-NK cell adhesion to tumor vessels, two in vitro approaches have been utilized. In the first approach, the tumor vasculature was simulated in vitro, by incubating the human umbilical vein endothelial cells in the tumor interstitial fluid collected using a micropore chamber (54, 80, 83, 124). Using targeted sampling fluorometry, Munn et al. (128) were able to quantify the expression of relevant adhesion molecules on the human umbilical vein endothelial cell monolayers. To determine the relative contributions of these molecules in adhesion under physiological flow conditions, the flow chamber was utilized (129). By using appropriate antibodies, it was found that the molecules up-regulated on the human umbilical vein endothelial cells include intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, which bind to CD18 and very late antigen-4 on the A-NK cells. Sporadic up-regulation of E-selectin was also observed, and the role of these molecules was confirmed in vivo by treating A-NK cells with antibodies against CD18 and very late antigen-4 prior to injecting them into the arterial supply of tumors. As in previous
in vitro studies, blocking these adhesion molecules nearly eliminated the adhesion of A-NK cells to tumor vessels (124).

What leads to the up-regulation of these molecules in the tumor vasculature? These molecules can be up-regulated by tumor necrosis factor alpha and a 90-kDa protein (p90) secreted by some neoplastic cells (85, 123, 125), and they can be down-regulated by transforming growth factor beta (45–47). To find out whether other molecules are present in the tumor milieu that also induce this up-regulation, and because tumor growth and metastasis are angiogenesis dependent, the two most potent angiogenic molecules—bFGF and VEGF/VPF—were studied (38, 39, 76). It was found that VEGF can mimic tumor interstitial fluid and up-regulate these molecules (30, 147). bFGF, on the other hand, exhibited no effect when used alone, but it abrogated the up-regulation induced by VEGF or tumor necrosis factor alpha (124). These findings were in concert with earlier reports that bFGF retards the transmigration of lymphocytes across endothelial monolayer (95) and reduces adhesion of endothelial cells to collagen at low cell density (62). They also offer a possible explanation for heterogeneous leukocyte–endothelial interactions in tumors; bFGF might have down-regulated adhesion molecules in these tumors. Current efforts are directed toward defining interactions between angiogenic and adhesion molecules using various in vitro and in vivo approaches, including genetically engineered mice (30, 76, 97, 161).

PHARMACOKINETIC MODELING: SCALE UP FROM MOUSE TO HUMAN

Thus far, the steps in the delivery of molecules and cells to and within solid tumors have been analyzed. Can this information be integrated into a unified framework? The answer is yes, to some extent, using physiologically based pharmacokinetic modeling. This approach, pioneered by two chemical engineers in the 1960s, has been applied successfully to describe and scale up the biodistribution of low-molecular-weight agents (for reviews, see 26, 50, 70). This approach has been extended to macromolecules and cells (11, 12, 170–172).

In this approach, a mammalian body is represented by a number of physiological compartments interconnected anatomically. The volume and blood flow rate for each of these compartments/ organs are known or can be measured. The parameters that characterize transport across the subcompartments (i.e. vascular, interstitial, and cellular) and the metabolism of various agents are not generally known and cannot be easily measured. One philosophy has been to use as many measured parameters as possible and to estimate the remaining parameters by fitting the model to the murine biodistribution data. By scaling up the parameters using well-defined scale-up laws (26), the biodistribution in human patients can be predicted and compared with clinical data. Discrepancies between predictions and actual data help in identifying interspecies differences and force the ques-
tioning of model assumptions. This is an evolutionary process—as understanding of underlying physiology and biochemistry improves, the relevant parameters are modified and the model is refined further. The model is useful not only for designing murine experiments and/or clinical trials, but also for identifying sensitive parameters that need careful measurement and analysis. If detailed spatial information about a tissue/organ is needed, then a distributed parameter model for that organ, e.g., tumor, must be developed (6–9, 11, 12, 63, 64, 82). Although simple in principle, this cyclic approach of analysis and synthesis has served as a useful paradigm for developing a deeper understanding of drug and cell distribution in normal and malignant tissues. The level of sophistication of these models is likely to improve as understanding of underlying principles grows (2).

BENCH TO BEDSIDE

The physiologic factors that contribute to the heterogeneous delivery of therapeutic agents to tumors include heterogeneous blood supply, interstitial hypertension, relatively long transport distances in the interstitium, and cellular heterogeneities (Figure 5). How can these physiologic barriers be exploited or overcome? Can findings about these barriers be taken from bench to bedside? Two recently developed strategies that have the potential to improve the detection and treatment of solid tumors in patients are described here.

As stated earlier, all solid tumors in patients exhibit interstitial hypertension (Table 1), provided the patient has not received any anti-edema treatment (22). Also, interstitial fluid pressure rises steeply in the tumor boundary (16, 74). This knowledge has been used to improve the design of the needle used by radiologists to localize the tumor for surgical excision (75). The needle placement in a tumor can be facilitated by placing a pressure-sensor in the needle. Because tumors begin to exhibit interstitial hypertension almost from the onset of angiogenesis (21), this needle may be able to help in localizing early disease. The same concept may be useful in optimizing location and infusion pressure of needles employed in intratumor infusion of therapeutic agents (17), and for monitoring response to therapy (176).

Several physical (e.g., radiation, heat) and chemical (e.g., vasoactive drugs) agents may lead to an increase in tumor blood flow or vascular permeability (32, 40, 43, 51, 53, 65, 81, 98, 99), or lower pH (80, 160). Another approach may be based on increasing the interstitial transport rate of molecules by increasing K or D enzymatically (17, 68, 155) or by using multistep approaches (9, 10, 12, 163). Several physical and chemical agents have been used to lower interstitial fluid pressure in tumors (53, 100, 103–105, 111, 112, 114, 177). Because microvascular and interstitial pressures in tumors are approximately equal, any change in one is followed rapidly by a similar change in the other, and thus the convective enhancement disappears rapidly (18, 133, 173, 174). By adapting a poroelastic model to solid tumors, it has been calculated theoretically and confirmed exper-
mentally that the time constant of pressure transmission across the tumor vasculature is on the order of 10 s (133). During such a short time period, the convective enhancement is calculated to be very small (∼1%). However, if the vascular pressure is increased repeatedly and if the transvascular transport is unidirectional or if the molecule binds avidly in the extravascular region, then, in principle, drug delivery to solid tumors can be increased significantly (134).

In contrast, the physiologic barriers discussed here may be less of a problem for (a) radioimmunodetection, (b) treating leukemias, lymphomas, and small tumors (e.g. micrometastases) in which the physiological barriers are not yet fully established, (c) treatment of adequately perfused, low-pressure regions of large tumors for debulking, and (d) treatment with antibodies or other agents directed against the host cells (e.g. tumor endothelial cells, fibroblasts) or the subendothelial matrix. These physiologic barriers also may pose fewer problems for treatment with a molecule or cell that has nearly 100% specificity for cells in the tumor. Until such selective molecules or cells are developed, methods are urgently needed to overcome or exploit these physiologic barriers in tumors. It is hoped that an improved understanding of transport in tumors will help in developing these strategies (71–73).

ACKNOWLEDGMENTS

I thank Brian Stoll for proofreading this manuscript, Gerald Koenig for his help with the references, Lance Munn for his help with figures, and Yves Boucher for his help with Table 1. Research described here was supported primarily by grants from the National Cancer Institute, the National Science Foundation, and the National Foundation for Cancer Research. An earlier version of this article was published elsewhere (71a). I thank the Biomedical Engineering Society for allowing me to reproduce this article.

LITERATURE CITED

pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res. 53:2204–7

64. Jain RK. 1979. Transient temperature distributions in an infinite perfused medium due to a time-dependent, spher-
ical heat source. Trans. ASME J. Bio-

lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–25

97. Koenig GC, Chen Y, Melder RJ, Jain RK. 1999. Basic FGF inhibits inducible CAMs on endothelial cells through PLC, PLD, PKC signaling. Submitted

124. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. 1996. During angiogenesis, vascular endothelial growth factor and basic fibroblast...

143. Roberts WG, Palade G. 1997. Neovascularure induced by vascular endothelial
growth factor is fenestrated. Cancer Res. 57:1207–11

164. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. 1996. Time-dependent changes in vascular perme-

Figure 1 Quantitative understanding of various steps involved in the delivery of therapeutic agents is studied by analyzing the underlying processes and then integrating the resulting information in a unified framework. More specifically, the goal of researchers is to develop a quantitative understanding of angiogenesis and blood flow, metabolic microenvironment, transvascular transport, interstitial and lymphatic transport, cell transport, and systemic distribution and interspecies scale-up.
Figure 2 Various microcirculatory preparations used to study delivery of therapeutic agents in solid tumors: (top) Sandison window in the rabbit ear (169); (middle left) Algire window in the dorsal skin of rodents (114); (middle right) cranial window in rodents (168); and (bottom) collagen I gel, containing angiogenic factors, sandwiched between nylon mesh (3 mm × 3 mm) to permit the growth of blood vessels (28). These preparations allow noninvasive, continuous measurement of angiogenesis and blood flow; metabolites, such as pH, pO₂; transport of molecules and particles; cell-cell interactions in vivo, and gene expression.
Figure 3 Targeted sampling fluorometry provides quantification of adhesion molecule expression on the surface of endothelial cells in an intact monolayer. The red propidium iodide marks the cell nuclei, while the green antibody binds to adhesion molecules (VCAM-1 in this case). Using the cell nuclei as guides, the computer places appropriate regions of interest (*blue circles*) for measuring the green fluorescence of individual cells. (Adapted from Reference 128.)
Figure 7 Heterogeneous extravasation of 90–nm–diameter liposomes from LS174T tumor vessels, 48 h. after injection. Note that some vessels are leaky, as indicated by the brighter fluorescence for rhodamine, whereas others are not. Extravasated liposomes do not diffuse far from blood vessels. (Adapted from Reference 167.)
Figure 8 Role of binding in the interstitial transport in tumors, measured using fluorescence recovery after photobleaching. (Top) Recovery is incomplete for an antibody against carcino-embryonic antigen, present on the surface of many carcinoma cells. (Bottom) Recovery of a photobleached spot is complete within approximately 100 s for a nonspecific monoclonal antibody. (Adapted from Reference 15.)
CONTENTS

A Dedication in Memoriam of Dr. Richard Skalak, *Thomas C. Skalak*
1

19

Airway Wall Mechanics, *Roger D. Kamm*
47

Biomechanics of Microcirculatory Blood Perfusion, *Geert W. Schmid-Schönbein*
73

Engineering and Material Considerations in Cell Transplantation, *Elliot L. Chaikof*
103

Bioreactors for Haematopoietic Cell Culture, *Lars Keld Nielsen*
129

Implanted Electrochemical Glucose Sensors for the Management of Diabetes, *Adam Heller*
153

Injectable Electronic Identification, Monitoring, and Stimulation Systems, *Philip R. Troyk*
177

Robotics for Surgical Applications, *Robert D. Howe, Yoky Matsuoka*
211

Transport of Molecules, Particles, and Cells in Solid Tumors, *Rakesh K. Jain*
241

Nucleic Acid Biotechnology, *Charles M. Roth, Martin L. Yarmush*
265

Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis, *David M. Wootton, David N. Ku*
299

Automatic Implantable Cardioverter-Defibrillators, *William M. Smith, Raymond E. Ideker*
331

Engineering Aspects of Hyperthermia, *Robert B. Roemer*
347

3-D Visualization and Biomedical Applications, *Richard A. Robb*
377

Microfabrication in Biology and Medicine, *Joel Voldman, Martha L. Gray, Martin A. Schmidt*
401

Engineering Design of Optimal Strategies for Blood Clot Dissolution, *Scott L. Diamond*
427

Cellular Microtransport Processes: Intercellular, Intracellular and Aggregate Behavior, *Johannes M. Nitsche*
463

New Strategies for Protein Crystal Growth, *J. M. Wiencek*
505

Metabolic Engineering, *M. Koffas, C. Roberge, K. Lee, G. Stephanopoulos*
535

Ultrasound Processing and Computing: Review and Future Directions, *George York, Yongmin Kim*
559

Telemedicine, *Seong K. Mun, Jeanine W. Turner*
589

Imaging Transgenic Animals, *T. F. Budinger, D. A. Benaron, A. P. Koretsky*
611

Instrumentation for the Genome Project, *J. M. Jaklevic, H. R. Garner, G. A. Miller*
649